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Abstract. We present equations of motion for the Su-Schrieffer—Heeger (sse) Hamiltonian
derived with the help of ansarz states similar to Davydov’s so-called |Dy) state for soliton
dynamics in proteins, Such an ansetz state allows for quantum effects in the lattice and goes
beyond previous calculations which mostly apply adiabatic models. In the most general case,
called {dq), which is treated here in detail, we assume that the coherent-state amplitudes for
the lattice depend on the site and the molecular crbital of the electrons. The equations of
motion are derived from the Lagrangian of the system, a method which is equivalent to the

. time-dependent variational pirinciple. In the resulting equations we find that, although the ssH
Hamiltonian is a one-particle operator, indirect electron—electron interactions are present in the
system which originate from the electron—phonon interactions. Inclusion of direct electrop—
electron interactions, as described in section 8, will give insight into the interplay between
electron—electron and electron—-phonen inferactions which can lead effectively to an attractive
force between the electrons in systems other than polyacetylene, where bipolarons are known to
be unstable. Further with our time-dependent wavefunction also vibrational details of absorption
spectra can be computed. From the equations of motion several approximations can be derived.
In a further approximation, |®2), the dependence of the coherent-state amplitudes on the lattice
site is neglected. This |®z) ansatz state cossists of a simple product of the electronic and the
lattice wavefunctions; however, the electrons are not constrained to follow the lattice dynamics
instantaneously as in the adiabatic case. Finally the classical adiabatic case is discussed on which
soliton-dynamics simuiations are usuaily based. Further we discuss how to include temperatura
effects in our model. Applications to soliton dynamics are discussed for the example of the |D2)
model with emphasis on the dependence of the results on solifon width and temperature. We
found that in contrast to results reported in the literature, where 2 similar ansaiz is used, but only
one electron is treated explicitly, the solitons remain stable also for small soliton widths. This
indicates that the interactions of the electrons not occupying the soliton level with the lattice
have a stabilizing effect on the soliton. Further our results indicate that the temperature model
using random forces and dissipation terms to introduce temperature effects has t¢ be applied
with extreme care in this case due to the strong electron-lattice interactions.

1. Infroduction

Since the introduction of the soliton model and the Su-Schrieffer—Heeger (S5H) Hamiltonian
[1] (for a recent comprehensive review see the article of Heeger, Kivelson, Schrieffer, and
Su [1]) for the explanation of various properties of trans-polyacetylene (¢-PA), it has been
shown that it is necessary to go beyond the simple Hiickel-type SSH model. A Hiickel-type
model e.g. cannot explain the spin densities in #-PA measured with the electron-nuclear
double-resonance (ENDOR) method [2]. Also for the explanation of >C-NMR line shapes the
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inclusion of explicit electron—electron interactions in the model! turned out to be essential
[3]. The observed photoinduced low-energy absorption was assigned to excitations from
photogenerated charged soliton pairs which would absorb mid-gap in the SSH model {4]. The
origin of the photoinduced high-energy absorption, however, was a matter of considerable
debate. Bishop ef al [5] assign it to a breather excitation left between a separating pair of
charged solitons. Wang and Martino [6] found an oscillating charged soliton—antisoliton pair
with a breather vibration of the chain between them to be responsible for this absorption,
while Su [7] and Kivelson and Wu [8] suggest a neutral (iriplet) soliton pair as its origin.
Therefore it seems to be established that the inclusion of electron—electron interactions at
least on the Pariser-Parr—Pople (PPP) level in mean-field form is necessary to obtain a
reasonable model of the dynamics of £-PA chains. Nowadays (see discussion and references
in [20]) it is established that nentral solitons are indeed responsible for the high-energy
absorption.

The computation of the gradient of the electronic energy with respect to the geometrical
degrees of freedom can be done in a time-consuming way by a small shift of the coordinate
of each CH unit [9-12]; however, the use of exact analytical gradients is more efficient
[13]. In ¢-Pa the soliton movement is restricted to roughly 50 CH units [2] probably due
to impurities, crosslinks, and cis-PA segments [14] or interchain interactions. Thus an open
chain seems to be a more realistic model than a cyclic one. Wang and Martino [6] used an
extended Hubbard model with first-neighbour electron—electron interactions. This seems to
be consistent with the first-neighbour truncation of the resonance integrals., However, the
resonance integrals decay very rapidly after the first-neighbour term, while the two-electron
integrals do not [15]. In our simulations using the full PPP Hamiltonian and the unrestricted
Hartree-Fock (UHF) method we found that electron—electron interactions have a considerable
influence on soliton properties [15]. Its kinetic mass e.g. is roughly doubled compared to
the SSH model [1] and its half width reduced in agreement with MNDO (modified-neglect-
of-differential-overlap) calculations [16]. The MNDO method treats all valence electrons
explicitly and not only the 7 electrons as PPP does. However, in [16] restricted-open-shell
HF (ROHF) was applied instead of a different-orbitals-for-different-spins (DODS) method like
UHF or annihilated UHF (AUHF), which are more appropriate for open-shell systems like
neutral solitons in (CH)y,41 (polymethine) chains.

In a previous work we have studied the influence of isoelectronic substitutions of CH
by N, NH*, and O within the SsH framework [10]. We found that a soliton is able to pass
a nitrogen atom but not the oxygen. In another recent paper [17] site and bond impurities
have been studied appiying aisc the SSH theory. It was found by Phiilpot er af [17] that
the soliton moves unperturbed in a rather broad range of the impurity strength. Since the
soliton properties change considerably upon inclusion of electron—electron interactions [15]
it is important to study the effects of site and bond impurities also within the PPP model.
This was done in our previous work {18] and we found that in the PPP model free soliton
movement is possible within a much smaller range around the parameter values appropriate
for carbon than in SSH models [10, 17]. Similar conclusions were obtained from a model
where the spin contaminations inherent in the UHF ansatz are avoided [19]. In a more recent
work we attempted to reparametrize the PPP Hamiltonian for polvenes and found that the
electron-phonon interaction parameteér has to be much smaller than in the $5H Hamiltonian
{20}. The results found from this study confirmed the assignment of the photoinduced low-
energy absorption to charged solitons and of the high-energy absorption to neutral solitons.

Since in all our studies using the PP Hamiltonian we found a rather small soliton half
width of about two to three lattice sites the question of the influence of quantum effects
on soliton dynamics in the lattice arises (see also the review by Heeger et af [1]). In early
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work Nakahara and Maki [21] discussed quantum effects on the solitons on the basis of the
continuum version of the $SH Hamiltonian. The discrete SSH Hamiltonian was applied by
Rukh er al [22] who used an ansarz which is a product of one-electron states and displaced
oscillator states for the lattice. Thus their ansarz is similar to the semiclassical [D,) ansatz
state introduced by Davydov [23] for the treatment of protein solitons, where coupled high-
frequency oscillators interact with acoustical phonons in the Iattice. Rukh et af [22] found
that quantum effects destroy the solitons when their size is small. Since in the PPP case the
soliton size is rather small, one has to investigate quantum effects further. Going beyond
the ansatz of Rukh er al we use an ansatz derived from Davydov’s more sophisticated
|D1}) state [24] which is a better approximation to the true quanium states of the Davydov
Hamiltonian. We call this general ansatz |®o). However, in our case the state contains
more than one quantum (electron) in contrast to Davydov’s considerations. In this paper
we concenirate on the derivation of the equations of motion from this anzatz for the SSH
Hamiltonian [25], as well as on some approximations to it, together with possibilities for
the consideration of temperature effects. These approximations include an intermediate one
where the coherent-state amplitudes for the lattice phonons depend only on the lattice site
and the wavenumber of the phonons and a most simple one where electronic and laftice
wavefunctions are separated, |}, comresponding to Davydov's {D) ansarz in proteins. In
the second paper (I} of this series we derive the same hierarchy of approximate equations
for multiquanta states in the Davydov model.

On the numerical side we restrict ourselves to applications of the equations of motion
for the |®;}-ansatz state, where the product of one-electron states is simply multiplied by a
coherent-state for the lattice phonons. However, the electrons are not constrained to follow
the lattice dynamics instantaneously, as is the case in the completely adiabatic model. This
ansatz state is of interest, because Rukh et al [22] use a similar model containing a product
of electronic states with coherent phonon states, but treat only the electron occupying the
soliton level explicitly. They found that in this case the soliton is unstable if its width is
as small as approximately one lattice site, as mentioned above. Since small soliton sizes
can be easily obtained in the SSH Hamiltonian by using a larger dimerization than the
experimental one we restrict curselves to the SSH model in this work and discuss soliton
dynamics within our ansatz state as function of soliton width and temperature. In these
calculations temperature is included via random-forces and dissipation terms. The results
are compared to those obtained from the completely adiabatic model.

Applications of the equations of motion following from the [Pg)-state ansatz which
allows for quantum effects in the lattice will be the subject of a forthcoming paper. Also
temperature effects will be studied in detail numerically there. After computation of a
reliable wavefunction, we can also calculate details of the absorption spectrum of the
system, if we deal with an excited state. With the ground-state wavefunction, ®(t = 0),
and the excited state wavefunction @{¢) obtained by our method, one can easily compute
numerically the autocorrelation function

S@) = (@ =0} P 0y

which contains non-trivial overlap factors between coherent-states belonging to the ground
state and to the excited state where the latter coherent-states are time dependent. From this
by Fourier transformation the spectrum

+o00 )
o(E) ~ f eELS(r) dt 7 @)
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can be obtained, as is done in conventional wave-packet calculations (see e.g. [37]). There
electronic and nuclear motions are separated in contrast to our ansatz (for times smaller
than zero, one seis the excited-state wavefunction equal to zerc), which will be extended
in the future also to PPP and to self-interaction-corrected-density-functional (see e.g. [38])
models. Thus one hopes that with well parametrized semiempirical models, like $SH or
PPP, or with the density-functional theory one could obtain more reliable results than with
conventional wave-packet dynamical models.

2. The model

2.1, The Su—Schrieffer-Heeger Hamiltonian

The 85H Hamiltonian {1] is given by

a2
» a
+ LB (i — py)? = Allin ~ am)}_ o

In (3) B% = —2.5 eV is the transfer or resonance integral between two neighbouring CH
groups; & = 4.1 eV A~! is the electron—phonon coupling constant. The values of these
constants [1] are determined such that an $5H (Hiickel) calculation on an infinite, ordered
and ideally dimerized chain resilts in a z-band width of 10 eV and a fundamental gap of
14 eV. M = 13m, (in ordered chains) is the mass of a CH unit, X is the spring constant
due to the o electrons between two neighbouring units, K and the linear potential constant
A are determined such that the ideally dimerized chain shown in figure 1 represents the
equilibrium geometry of the chain [26].

e
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Figure 1.
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In figure 1, the u, are the projections of the displacements of the CH units from the
equidistant chain onto the polymer axis, ap is the lattice constant of the equidistant chain
and vy is the distance of the CH units from the chain axis, which is kept constant in the $5H
model, i, is the operator of the displacements of the units parallel to the chain axis from
their positions in the equidistant chain, and p, the corresponding momentum operator. The
operator &} (€,,) creates (annihilates) an electron with spin orientation ¢ at unit #. The
Fermi commutation relations of these operators are obtained from

&r0) = 11) &y =0 él0y =0 él1) = |0) ()
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as
{A,By=AB + BA (Gaos &5} = Spurbor {Pos Ewr} = (&5, 851 =0. ()

In ¢-PA as can be seen from figure 1 two energetically degenerate bond alternation phases
exist. In chains with an odd number of carbons we have an unpaired electron, which
occupies a non-bonding level at mid-gap, the soliton level. The soliton is a domain wall
where the system switches from one bond alternation phase to the other. Usually the
systemn is treated adiabatically [1], i.e. the units are considered as classical particles moving
in the potential created by the m electrons and in the harmonic potential due to the o
electrons. In this case, using the SSH Hamiltonian, one observes a stable and mobile soliton.
However, recent calculations have shown that for a small soliton width quantum effects in
the lattice might destroy the solitons [22]. In the SSH case the soliton width is quite large
(14 lattice units); however, if electron—electron interactions are included the soliton width
is drastically reduced [15, 18-20], thus also invalidating considerations based on continuum
approximations {21). Since in the $S8H case the soliton width can be chosen freely by the
vaiue of the equilibrium dimerization g, this model seems {0 be a good starting point 10
study quantum effects in the lattice in more detail. It seems to be reasonable to start with
an arnsatz state similar to Davydov’s [Dy} state for this purpose. The basic differences to
the Davydov model are that the electron—phonon coupling appears in the site-off-diagonal
terms in contrast to the Davydov model where the exciton—-phonon coupling appears in the
site-diagonal terms, and further, that instead of bosons (C=0 oscillators) we have to deal
with fermions (electrons).

The $$H Hamiltonian can be rewritten into a more familiar form by introduction of the
usual creation and annihilation operators for the lattice phonons which are of the same form
as in the case of the Davydov Hamiltonian and obey Bose commutation relations:

[ﬁi, é] = A\E hant éAA [Ek., 5;:] = 51:]:’ ° [i;;-, Bz:] = [gk, Ekf] = 0 (6)

For this purpose we rewrite first the Hamiltonian to get rid of the linear terms which leads
to :

A L - + oa B
A=Y {[ﬁ — (@ = Gue) 5, Eriro + Exyy lne) + 5

2
;J + %K(én - én+])_2} +C.
Q)

The g, are displacement operators relative to the minimum geometry of the lattice potential
in (3) and are defined in appendix A. The constant C and the renormalized hopping integral
are also given in appendix A. The one-electron sSH Hamiltonian is then given as
=3 {:.B + > ooy B (b + B,;*)](e:.,em.a & olue) F ) hanbb+ 1)+ C.
ne k k
@)

Separation of the constant term leads to

~

H=8+D =13 hw+C (9a)
4
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and the gauge transformation

) = /A1) &m-;-c;:lq,) - e-i/w:lq,)' (9b)
Therefore
8 .
iﬁb-;hlr) = (H 4 D)) (9c)

and with the transformed wavefunction we obtain finally

D|®)e P 4 Ihc"”‘D’ 3;1®) = (H + D) @) = xh 5719 = H12) Od)

with

A= Z [ﬁ + ankank(bk + bﬂ]( Wit By o) + Y RenbT By e)
k

where B is given by

o 1
By = —
nk ThanM

Vot — Var) (10

oy, being the eigenfrequencies and V; the coefficient vector of the normal mode & of the
decoupled (x, = 0) lattice, i.e. they are the solutions of the eigenvalue problem

1
K% =0V (11a)

following from

. v
mi = —E =—Ku 2 E(Qn _‘In-l-l) (115)
and thus
Kpm = K[2(1 - %snl - %SnN)anm _am,n—l(l - 3»1) - lfsm.r:+l (1 - BHN)]' (IIC)

The translational mode (& = 0) has to be excluded from the summations.

2.2. The ansarz state

As ansatz state one could think of using a Slater determinant (in the Hiickel-type SSH case a
simple product of one-electron states would be also sufficient) buili from the (orthonormal) |
molecular orbitals

Z Dyi(ens [Ba))EF100e = ) cnl®)E7 (0)e]B) (12)

n

where |0), is the electron vacuum and the coherent-states would be given by

1By = [[1Bues) |Buts) = e~/Pbuil bt 10y — b tibujo), (1)
k
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where |0}, denotes the phonon vacuum [27]. However, when forming the Slater determinant
or a product state from these MOs, we would obtain products of coherent-states from different
sites which do not form a pure coherent-state again. Therafore we have to introduce another
form of the ansatz.

To this end we first of all introduce creation (annihilation) operators & (c,,,) which
create (annihilate) an electron at site # in the spin orbital j. Our full Hamﬂtoman for v
electrons reads then as

g= Z [ﬁ + Zk:ﬁwkﬂnk(lak +bf ] ZI(C,UCHI G, ) + Zhwkb+b’< (14)
n =

Now each of our v electrons () occupies an atomic orbital at site n;. To denote this

situation we introduce a row vector n = (1, By, ..., 1, ..., 1y). Thus we can write the
electronic part of the wavefunction of this state as a Slater determinant
" 1 n
n = — -’
| fe(n)) = [H ] e A mXPj( ) (15)

where in the antisymmetrizer P runs through all possible permutations of the electrons.
Here we have to note that in our case of a one-particle Hamiltonian the construction of
a Slater determinant is not necessary, because a simple product of the one-electron states
leads to the same results.

The electron distribution given in equation (13) causes a polarization of the lattice due
to the electron~phonon interaction in the Hamiltonian, leading to a state

[£(n)) = | fo(n)) UnlO)p. (16)

If we assume that the lattice polarizations due to the individual electrons can be
superimposed to give the total state of the lattice, we can write the lattice operator in
equation (16) as a coherent-state:

ﬁn = /D Tl Ee bnjki(f)lzezk[ ‘J"'=1 b, {016 (17

where the coherent-state amplitudes b,y; are functions of time and have to be determined.
Then the total wavefunction can be writien as a superposition of all states | fn)):

chucm (18)

Since we have a one-particle Hamiltonian, the NV coefficients, where v denotes the number
of elecirons, decouple to products of the expansion coefficients of one-particle states, the
spin orbitals. Introduction of this decoupling leads to our final ansafz state

| Z l:l—[c"r-f (t)c }io)ee—(l/z) el bnjkj(!)lzez:g[z}'=| bn,kj(l)]gf|0)1;| (19)

LS

where we have already left out the antisymmetrizer, since it is not necessary in a one-
particle case. In paper II of this series we will deal with bosons and we can use also a
simple product for distinguishable particles and a permanant for indistinguishable ones. 4
permanant is constructed in the same way as a Slater determinant, except that each term has a
positive sign, i.e. instead of the antisymmetrizer one has to use the same sum of permutation
operators but without the factor (—1)f. However, also for bosons both cases give the same
results in a one-particle model. In the next sections we will derive the equations of motion
for the parameter sets {c,;()} and {b.;(t)} from this ansatz state which will be denoted
by |®p) in what follows.
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3. The Lagrangian for the | &y} ansatz
For a general Hermitian Hamiltonian H = A+ with solution |} the Lagrangian has to be

constructed such that the Euler—Lagrange equations give the time-dependent Schrédinger
equation and its Hermitian conjugate:

d ar oL

—-——--—--—0=;-m— bij 20
T L |} = Hig) (20a)
d aL 3L 8

e~ 3y =02 gl = Gl (200)

The two conditions together are only fulfilled if the Lagrangian is written as

_ ik dip dip
L=3 ((‘p a:) (a:

Thus we have to form the corresponding expectation values with our ansatz state and
Hamiltonian (see e.g. [28]). The form of the different terms cccurring in L can be most
easily seen when they are explicitly constructed for a simple three-particle, three-site system.
This is done in appendix B. The final form of the Lagrangian for spin orbitals and a chain
of N sites and v electrons (which occupy p spatial orbitals) is then in orbital form

qo)) — (plH1p). @n

ih . -
L= E ZOJ'(C,U'CL- - cnic,,j)Xj
rf
in
+ 5 { E 071cxj|*baxf [bnk;XJ + Z(OJ' ~ 8i)empl® by Xy ]

k !

— > ojlen 6}y, [bnijJ +) (op - afj')icw'[zbmkj‘xjj’:“ ~H (@)
ni

mj’

i is the number of occupied (singly or doubly) spatial orbitals and the o; are the occupation
numbers. The X; and Xy are products of molecular-orbital norms and are defined in
appendix B. The Hamiltonian function H is (see appendix B)

= (®|H|®) Zﬁwk{ Zajlcnjf by [ ki X j +Z(0j’ - jj')lcmjflzbmkjijj’“
mj’
+ Z 0;CniCrit,j Dt { [ﬁ + Zhkank(an,kj + b:kj)] By
nj 3
+ ank But Z(oj, — 8 ) emp 2D 11 (ke -+ By Prjyt }

+ ZOJCRJC:H,,‘DMI.::J H:ﬁ + Z Ry Bur by 5 + bnki):l Py
nf k

-+ Zha)_:;Bnk Z(Ojr —_ ajj')lcmj |2D’Ti] n ](bmk) -+ bmkj) nif } (23)
k mj’
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The- derivation of H is again given in appendix B. The D and P values derive from

factorized overlap integrals between coherent phonon states (see also appendix B). The D
values are given in (B25)-(B29) and the P values are

mJ Gjr—ahf
Fj= H Zlcwl Dt
Ot —8, it —8jr jer
HH = I—I [Z]ij"[ Jzn+l ;:I
J

J N A
h’—]

(24)

To rewrite the Hamiltonian function from the spin-orbital basis (v singly occupied spin
orbitais) to the orbital basis (w singly or doubly occupied spatial orbitals) the following
replacements

v 3 o
IR AN/ DB ) (o = 8)%
j=l j=I

J=l =1
I

I'[ Yy — ]_[(Y yor=brs H Y — n(y,,)vw—sm—avi,u '

ﬂ'_]
.f #J ”séu

@)

had to be pedformed, where the ¥ values stand for any occurring arguments in the sums
and products. With these equations the Lagrangian for our |®g) ansatz state is completely
defined and we can go forward to the derivation of the equations of motion of our time-
dependent parameters.

4. Equations of motion for the |®,} ansalz

From the above-derived Lagrangian in orbital form
L = L({enj (D}, {oni; (O] (26)

the equations of motion can be obtained with the Euler-Lagrange equations of the second
kind:
48 B o 4O _, 27)
drd¢,; dcy; de aby,;,  dbny
where n runs over the N sites of the chain, j over the p (doubly or singly) occupied spatial
orbitals and £ over the (N — 1) (non-translational) normal modes of the phonon systemt.
This procedure is equivalent to the time-dependent variational principle (see appendix E)
or Heisenberg’s operator method, after averaging the equations of motion for the operators
with |®g). The derivation of the equations is given in detail in appendix C. As shown
there, we have to add Lagrange multipliers to the above Lagrangian in order to conserve
the overlap of the orbitals, leading to the equations

_ d 3L 8L
L= L+1ﬁZaﬂf(Sur—5u Y= em e =ik Y &jycnj d&t aby,, dbyy -

i nf aj J
(28)



9098 W Forner

As shown in detail in appendix D, the equations of motion can be cast into the simple form

ny [Pnf.m,-remy + Ompmjry + > Uy ) Brnir + Vs (k)?):,zk,-,]} = Wejuj oy
mj' k '

(29)

7Y (A ©)emp + By UV + Orgmp (Vb ] = > Qoo U beyr + T (k). (30)

mjt mj’

Considering {nj} as one combined index we obtain the following system of equations for
the determination of the time derivatives of ¢ and the b, from their actual values at a given
time:

ih[Pc': +QE + > Ube+ > V(k)i?z] =We (3la)
k k

R[AK)E + A)E + OU)b] = QUEby + J (k). (310)

The matrices occurring in (29)-(31) depend only on the vectors c(f) and b(t) and on
constants. They are defined in detail in appendix D. From equation (315) we obtain

by = L) + M(E)e + N by = L7(k) + M*(0)¢* + N*(kje (32)
with

Lik) = "%@_‘(ff)[ﬂ(@bk + J(&)] 33

M) = —O~ (D AK) NE) = -0~ (R)AK).
Thus each of the (N —1) k values (translation excluded) requires inversion of an (¥ x N )

matrix @(k), where again N is the number of sites and p the number of occupied
orbitals. From unpublished, preliminary numerical experience with an approximation to

these equations, where the D,’:}-‘", Pp;, and P,;;, are assumed to be constant in time and
equal to unity, we conclude that these inversions should not cause any numerical prablems.
The same holds for the further inversion required later on. Substitution of equation (32)
into equation (31a) yields

(e+ré=n
¢ =P+ > [UEME) + VEN* )]
k

£=Q+ > [UENE) + VM ()] (34)
k
n = ~=We— 3 URLE + VR L @]
k

From this we obtain

a=plv (35)
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where

o= ([RG(C) + Re(s)]  [Im(x) — Im(C)l)
(m(¢) +Im(x)] [Re(() — Re(x)]
5= (Re@)) v (Re(n))_
Im(c) Im(x)

This step requires inversion of the matrix g, which is of dimension (2N x 2N ). Here we
have an important point where correctness of programs can be checked. After computation
of the time derivatives of the ¢ values in a time step, one can calculate the time derivative
of the overlap matrix from them. which has to be identically equal to zero by construction
at any time step.

For the numerical solution of our system of equations we have several options. One
would be application of a simple one-step procedure. A way to improve this simple method
is the use of a standard Runge—Kutta method, correct up to the fourth order in the time-step
7, or for further improvement, Milne’s predictor—corrector scheme, which is correct up to
Oz’ [36]. ) .

Finally, we want to point out that inspection of the equations of motion in appendix C
shows that, in most of the terms occurring, we find products of the coefficients for different
molecolar orbitals, i.e. for different elecons. This implies that we have an effective
electron-¢lectron interaction present in the system, although the $sH Hamiltonian is a one-
particle one for the electrons. This effective electron—electron interaction is not a ‘frue’
direct interaction, such as the Coulomb interaction, but one which shows up because of the
electron-phonon interactions. It might occur that in a Pariser—Parr—Pople model with the
|®q} ansaiz state this can lead naturally to effective attractions between electrons and thus
to a counterpart of the ‘negative-U” Hubbard Hamiltonians discussed in connection with
high-T; superconductors. However, such 2 phenomenon cannot occur in 2-PA becanse it
would lead to the formation of bipolarons in doubly charged chains, and it is known that in
¢-PA bipolarons are unstable with respect to pairs of free, singly charged solitons and anti-
solitons. However, when applied to semi-empirical models of copper oxide planes there
might well occur an effective attraction between electrons or holes and thus pairing would
show up. Likewise it is known that in many conducting polymers with non-degenerate
ground states bipolarons function as spinless charge carriers in the conduction mechanism.
Finally, not to forget the phase factors, note that our total wavefunction is given by

) = e D DihtOn 3 l:l—[ cn!.;(t)é;';j]l(})c

Ry By = j=1

> &=/ Bl Zjoa i OF L Ty bags O 1y 37)

(36

These phase factors are important for the computation of autocorrelation functions.

Due to the high degree of non-linearity in our equations it might be difficult to find
numerical sclutions of them. Thus it would be interesting to examine which approximations
to the full |®g) theory can be derived. This is the topic of the next section.

5. Approximations derived from |®,)

As already mentioned above, due to the complexity and the large degree of non-linearity in
the equations of motion for the [®p) ansarz state, which make numerical simulations very
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l (&> by By

b By
Gy(t) ~ exp[-(ifm)e tid,
| adiabatic model|
Figure 2.

complicated and time consuming, one bas to think about reasonable approximations to this
ansarz state. There is a natural sequence of possible simplifications which is sketched in
figure 2. The definitions of the quantities occurring are given below. In this section we
want to discuss briefly these approximate equations of motion.

5.1. The |®) approximation

In this approximation we start from the |Pp} ansarz and neglect as a first step the orbital
dependence of the coherent-state amplitudes, i.e. we set by (¢} = by (1), leading to

Y
|q)1} = c—l}'ﬁ((l/Z)Zkﬁtﬂk%‘C]t Z [HCHJ.J(E)E:;_J]EO)B

Blyen ty &= =]

se o= VDTl Ty bups OF ST oy (V1] 0, (38)

Here the w, are the frequencies of the normal modes of the lattice (phonons}, C is a
constant energy (see above), the ¢,;(¢) are molecular-orbital cocfficients, where n denotes
the site and j the (occupied) spin orbital, E,'; creates an electron at site # in spin orbital
7» v is the number of electrons in the system, |0, is the electron vacuum, bu(f) is a
coherent-state amplitude for site n in the normal mode k, b,f' creates a vibrational quantum
(phonon) in the kth normal mode of the lattice, and {0}, is the phonon vacuum. Physically,
in this approximation we assume that the lattice polarization caused by the population of
a given lattice site with electrons does not depend on the individual electron, but only
on their total population at the site. This assumption seems to be quite reasonable and
leads to a couple of significant simplifications. The Lagrangian and equations of motion
for this ansatz state can be obtained from those discussed above just by neglecting the
orbital index ; at the coherent-state amplitudes, With this approximation the computational
work is reduced roughly by a factor of ., because we have to determine only N(N — 1)
b parameters compared to wN(N — 1) before. In addition, the matrices ©(k) which have
to be inverted are now of size (N x N) compared to (uN x puN) before. However, the
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high degree of non-linearity is still present in the |®1} equations. The physically interesting
indirect electron—electron interactions are also preserved in this approximation. Since the
high degree of non-linearity is still there, we switch now to the next level of approximation,
where also the site dependence of the & parameter is neglected.

5.2. The |P3) and the classical approximation

In this approximation the orbital and site dependences of the b parameters are negiected.
Thus we set bu;(t) = be(t). From this assumption follows immediately that Dy = 1,
D,'f-f =1, Pp; = X;, and Pp;p = X;p. Physically in this approximation it is assumed that
the total distribution of the electrons gives rise to the laitice distortion, no matter what orbital
the individual electron occupies or what is the individual electron population at a site. This
is a rather crude approximation and it is known from Davydov soliton theory as the |Ds)
approximation. As we will see, in this approximation the lattice is described semiclassically
with one coherent state for each normal mode of the decoupled lattice. However, we discuss
this approximation in more detail, because it is applied numerically later on.

The ansarz state in the |$,) case reduces to a simple product of the electronic
wavefunction with the lattice coherent states. Thus phase mixing between the electronic and
the lattice wavefunctions and therefore quantum effects in the lattice are neglected. With

the above simplifications, the ansatz can be written as

(02} =[TlenlB) g =) cu®)E10)
j=1 [

18) = exp| = 4 S 1bF |exp [Z vbk(r)é,':] 0.
k i

This implies that summations over orbitals as occurring in the Lagrangian can be reduced,
e.2
> ojlen ? f(bnk,)X fbe) Zo,lcn, PX; = fb0) Y 0;X = vfbr)X

i

nj

(39)

ZGJICWI Z(OJ' — §jiemy| 3(bnk1’ ki ) X jjr

nj

= g(bw) Z ] Z(o,f = & Memp P Xy
= g(b) Zo, Z(o,, 5 Y et Y lemp P Xy
m -
= g () Z_ o; Z(o,-r —8,)X = v(v — Dgbw)X. (40)
J '
Use gf these results vields the Lagrangian 7
L= % %:OJ (EnjCly = CniCni) X; + %‘1’2 Zk:(ékb: —bib)X — H (41)

with the Hamiltonian

H= E [ﬁ +v ;hwgsnk(bk + b;)}oj(c;jc,m‘ Jhenicha DX+ Zk:hwk[bklzX.
nj

(42)
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Finally we obtain for the lattice displacements and momenta

25
g () =v ) Uni Reby(t)]
; Moy, (43)

Palt) =V Y V2RM ey Une Im[bi(1)].
k

Substitution of &} (¢} = vb(z) and renaming & () as b (¢) again yields the final Lagrangian
and ansatz state.

The Euler-Lagrange equations for the b} together with (v is again the number of
electrons in the system, which is constant in time, see below)

Piw=Y ojley® Y Pu=v (44)
i n
yield the equations of motion

b = b+ 3B Beri + Bt 2P| 45
n

which can be shown to be equivalent to
Prn = K(Gne1 —2gn + gn-1) +2cRe[ Py 1 — Pn,n—l]- (46)

From this we see that the dynamics of the lattice (without electron—-phonon coupling) follow
from the classical equations of motion; however, in contrast to the adiabatic model the
dynamics of the electrons are taken explicitly into account. Further the p, and g, here have
to be viewed as the expectation values of the operators. Note that equation (46) is identical
to the lattice equations in the adiabatic case, since

3E,
aqn

2o Re[Pn,n-H - Pn,n—l] == (47)

if E, and P are determined by diagonalization of the Hickel matrix for geometry
{gn}. However, in the |®2} case the MO coefficients are determined in a different way.
Temperature effects can be included by introduction of random-forces and friction in the
above equations in the same way as in the classical case (see appendix F):

ﬁn = K{gni1 ~ 2q, + gn-1) + 2 Re[Pn.n+1 - Pn,n—]] + Ry(t) —Tp, (48)

where the random-forces R,(z) are created in the same way as described in appendix F. For
the orbitals we get from the Euler-Lagrange equations

Rénj = (B + Endons,j + B+ Enci)eat,j +rj ) [—E(bkbk — bpby) +ﬁwklbk!2] :
P
(49)

Now we perform a phase transformation

Gnj = Coj eXp { -y fo T (Be(r')B5 () + il et} ?] dr’} (50)
k
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and arrive after renaming a,; as ¢»; again at the final equations of motion:

ihf:'nj =(p+ Eplentij+ (B + Ey1)Cn-1,;
E,= Zﬁkank(bk +B}) = —et(gn ~ gns1) 1)
%

= iﬁé,,_,— = [ —olgn — gnr1)lCnpr,j + [ — gy — Qn)]cn—l,j-

A discussion of numerical results from this ansatz are given in section 7. The explicit
indirect electron—electron interaction terms are neglected in this approximation.

However, in the above-derived approximation, the dynamics of the electrons are still
considered explicitly, while in the usual 35H theory the electrons are assumed to follow the
motion of the classicaly described lattice instantaneously. To arrive at this approximation,
we have to assume that the electrons are in a stationary state for each lattice geometry (at
every instant of time), i.e.

@i () = e (G5 10)e = ™M"Y " g2t [0)e. (52)

We obtain by substitution of c,;(#) = exp[—(i/R)&;f]d,; into equation (S1) an eigenvalue
problem

sjd,,_,- =[8— (g, — Qr;+l)ldn+l,j + I8 —alga—1 — q::)]dn—l._i = de = def
with Hy=[8— a(Qn - QH+I)}5m,n+I -+ [ﬁ - a’(q:z—l - Qn)]am,n—l

(53}
aE N .
= Ex =) 0j5; = — 3; =200) " 0j Relen(Chya ;= Epr, )N
J # i
Substitution of this result into equation (46) yields finally

. aE
Br = K(@nt1 = 2n +Gn-1) — 5— (54)

dn

which is identical to the equations derived in appendix F for the adiabatic approximation
which is usually used in simulations of the dynamics of #-PA. Therefore, through our series _
of approximations |®g} — (@) — [P3) — adiabatic model we could show up the links
between our quantum-mechanical ansafz state and the vsually used SSH theory.

5.3. The |®3) and [Py} approximation

As we can see from figure 2, there is another series of approximations which finally also
leads to the | ;) state. However, from this series it can be expected that it wounld lead to
equations which are numerically more tractable, by conserving the quantum nature of the
lattice. In order to arrive at the first one of these approximations, |®3), we do not make
assumptions on the & parameters directly, but on a quantity derived from them, namely
their overlap, which contains a series of factors which are simple phase factors. These

are factors of the type D::,Jr What is the essence of this approximation is to assume the

phases in these factors to vanish, i.e. we assume D:‘-jr = 1. This is an approximation
not on the level of the gnsatz state, but on the level of the Lagrangian derived from this
state. It has the further consequence that P,; = X; and Fy;y = X;p. Thus first of all, the
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most complicated terms in the equations of motion which originate from derivatives of the
P value with respect to the b parameters vanish and a further simplification stems from
the fact that we have shown already that X = X; = X;» = 1. Due to the last fact, the
high degree of non-linearity becomes reduced and it is quite probable that neglect of some
phases should not be too crude an approximation. The {&;) approximation changes the
Lagrangian oaly in the electron-phonon part of the Hamiltonian function. This implies that
in the derivation of equations of motion for the ¢ values (see appendix C), ail terms remain,
but the D values have to be set equal to unity, as well as the P values remaining after
differentiation. We note here that the high degree of non-linearity in the former equations is
reduced considerably in this approximation, while the indirect electron—electron interactions
and the quantum description of the lattice is still preserved.

In the {44) approximation we proceed in the same way as before in going from |Pg)
to [®y), i.e. we neglect the orbital dependence of the b parameters and set bug; (t) = bar(2).
Finally if we neglect here also the site dependence of the b parameters we arrive again at
the semiclassical {&;) equations.

6. Initial state and inclusion of temperature effects

For numerical applications of the equations of motion for the |®p) model the initial state can
be obtained by computing from the usually used end-kink geometry (1, = (=1)"*lup, p, =
0) the corresponding b.;(t = 0). These quantities can be computed by forming the
expectation values of the displacement and momentum operators with our state (V contains
the normal-mode coefficients of the decoupled lattice)

Palt) =3 V2ME, Vi0j ey (8317 Il Byt (£)]

ke j
— .
un(e) = 3 [T Virj i ()7 Relbwg (0] + (55)
kmj @

A1 0
dy=—[n— 3N+ D¢ + 5 §ug,>.

The ¢,;(t = Q) can be obtained from a static $5H calculation with this geometry. To avoid
numerical difficulties due to the matrix inversions in the equations of motion we can use
the same approximation as in case of the Davydov soliton [29,30]. Namely, we can assign
each ¢p; (¢ = 0) which is smaller than a given threshold value x with x, chosen as a small,
physicaily insignificant number (e.g. x = 0.005).

However, multiplication of the above equation for u, by (M/2#)/?V, and summation
over r, vields a factor

D Vi Vg = B . (56)

due to the orthonormality of the normal modes. After performing the summation over k£ we
arrive at
May
mzjojlcmj > Re(bmy) = Z V5 Vadn
Mo
= ; [Z 07 lcnj|* Re(bars) — f _%_k Vnkqn] =0.

J

6N
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Thus from the lattice displacements and momenta we cannot determine the coherent-state
amplitudes &,,; uniquely but only a weighted average of them over the orbitals. Thus we
can use

I M
Relbng (0 = 01 = S o/ 55 Vsan6 =0 3=, 58)
F A

In a similar way we obtain

1 1
Im(byit =0)] = Vo = 0)[21} M, Veepn(t = 03: (59)

For the determination of the {&,,} in the |®,) approximation for the simulation start we
have again a weighted average:

May,
> P Relbut) = D[ == Vit

I
; Pmm Im(bmk) = Zn: m—vnkp,,

(60)
Mo,
= Zn: [P,m Re(bue) — ./ Qﬁ" V,,kqn] =0 -
Z P, Im(b) — ! v, =0
4 nn nk Moy, nkPn | =

with

P= Zojcjcj' = P = ZOanjc;j- 7 (61)

F i
Thus from
nekl 1 4 1 N1y Mo

gn(0) = (=) g +[n — 5(N + 1)]E - 5(1 + (=1 )-A—, pe(0) =0 (62)
we calculate the initial values of the b,

1 Mw;c 1

b =— —V, = = ==V pn (0},

Re[by: (0)] P\ on wiedn (0 Im{5,(O}] P\ Mo wk Pa(0) (63)

The stmulation start in the [®,) approximation is trivial, since there occur no weighted
averages in the transformation to normal modes.

To include temperature in the theory we have several options. One of them is Davydov’s
method which uses a thermally averaged Lagrangian for the derivation of equations of
motion. However, this method has been frequently criticized as being inconsistent with
density-matrix theory for mixed states. Further one could use a product of coherent-states
at each site where one factor resembles a thermally averaged phonon population [31]. The
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Langevin-equation method (see appendix F} should be used only in the classical case.
However, because it is frequently applied to model temperature we decided to use it in
our numerical simulation to study its behaviour. For later applications we want. to use
the method of thermal population of the lattice phonons prior to the soliton start which we
applied successfully in the case of Davydov solitons [32, 33]. This method has the advantage
that the calculated initial displacements of the units can be incorporated in the classical 5sH
theory (see appendix F), Davydov’s semiclassical |2} method, and the quantum-mechanical
cases which are discussed here. With the help of the eigenvectors V and the eigenfrequencies
ey we can populate each normal mode & with an energy E; according io the Bose—Einstein
distribution. Then E; is given by {33]

B
E, = Nk T -2kt

= [eﬁw‘*/kar - 1]_1 R= Zhwkvk. (64)
k

One half of this energy yields the displacements and the other half the momenta of the units
due to a given normal mode & (kp is Boltzmann’s constant). Superposition of all modes
(excluding the translational one) leads to that part of the initial disptacements and momenta
which are due to temperature effects only:

_ Ey ] R Ey
¥ (0) = ; Vnk\[ K nrtr = Vo ¥2(0) = zk: Var, | s, VL (65)

From these displacements and momenta we can compute the quantities

B = sin~! [C—;f- Z Viak Vn (0)]
- (66)

2 2
o= J | X | = [ 3 vain0]

which appear in the final equations for the initial displacements and momenta due to
temperature effects. These are obtained by substitution of (66) into the analytical solutions
for the decoupled lattice. Superimposed with equation (62) we obtain finally

201 = 0@+ 3 Vit sinlanto + 4]
(67)
Pa(0,T) = M0, T) = M ) Vi cosleopip + D]
k

where # is a lattice equilibration time which can be chosen arbitrarily without effect on
the soliton dynamics obtained as was shown numerically for Davydov’s soliton in [32].
We chose typically 1 = 100 ps. The quantities from egquation (67) can now be used
directly as initial conditions in the classical theory {appendix F), in the semiclassical |®;)
theory or, transformed according to (58, 59, 63), as initial data for the more sophisticated
approximations. However, one has to consider whether due to the strong electron~phonon
interactions it would not be more realistic to fit 2 parabolic potential to the total (electronic-
plus-lattice} energy in the potential minimum realized at the start of the simulation and
compuie the eigenvectors and eigenfrequencies necessary from this potential instead of the



Multiquanta states derived from Davydov’s \D;) ansatz 9107

V(u)

-Ug 0

'2':10 ~il.1 i
Figure 3.

pure lattice potential. Thus it might be necessary to determine the initial lattice coordinates
due to thermal fluctuation not from the decoupled lattice potential V, alone but from the
total potential energy V = E, +V,. Let us consider a geometry u, = (—1)"*!u which leads
with & = *up to the two equilibria of an odd-numbered chain, then we have as potential
V(1) the usual double-well potential as sketched in figure 3.

Note that in the case of an even-numbered finite open chain, we have only one minimum
at u = ig. Let us define now coordinates x, relative to one of the minima. We choose here
the minimum u = uy, since # = —ug is not a minimum of the potential for even-numbered
chains. Thus we have ’

Xp = lp — (_l)a-}.lu[] . (68)
and the above-described geometry is given by
X = (1" (4 — ug) (69)

and we approximate the right potential well by a parabola centred at the minimum (dashed
line in figure 3)

W w
V() = V@) = Viao) = 5 3 (st =50 = — D (=1 [~(u — ug) — ( = u)]’

V() — V(uo)
2(N = 1)(u — uo)?
70)

= —ZI— Z(—-Zu +2up)* =2(N — D)W{u —up)*> = W =

i.e. we need to compute the total potential of a given chain, via diagonalization of the Hiickel
matrix and addition of the lattice energy, only at two points, namely at some arbitrary value
# and at ug to compute the potential constant W, However, it might be better to calculate
W for several u values and take the mean value of them. Then in the wsual way we
can determine the normal modes of the potential V{x), populate them according to the
given temperature 7 by means of Bose~Einstein statistics, and finally calculate the lattice
displacements from equilibrium and the momenta due to thermal excitation as described
above for the lattice potential V, alone.

At this point a word of caution is approprate: the above-sketched approach is only
applicable if the thermal excitation energy NkgT is less than the barrier height AE.
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Otherwise the harmonic approximation for the potential well breaks down, if states in
the energy region around or above AE are significantly populated. In such cases one needs
to use coupled anharmonic oscillators with cubic and guartic anharmonicity for the potential
function.

Finally, during a {&y) simulation the actval displacements and momenta can be
calculated by (note that V is real)

P = 2 ~2AMexVu Y 0jlcm;* Imbpy]
km Jj

2h - 2
gn = ; /ka v,,k;oj[cmﬂ Relbmi;] (71)

A 1
tr = gn [0 — (N + 1)]E.+qu’gp,

In the following we present for comparison dynamics caiculated with the classical S8H
model (appendix F), and the semiclassical |4;) ansai; using Langevin equations for the
inclusion of temperature effects.

7. Results and discussion

We have computed the dynamics of a chain of 1! units within the fully adiabatic model
(as described in appendix F) and the |®;) ansatz (as described above; for details of the
numerical procedure, see appendix G) for different values of the bond-alternation parameter
1o, since in the $$H model this parameter controls the soliton width. For up = 0.03 A
the soliton half width is about seven lattice sites and decreases with increasing uy, e.g. for
g =10.1 A it is about three lattice sites [1]. The case of small soliton widths is interesting for
two reasons. First of all our caleulations including electron—electron interactions indicated
that these interactions mainly reduce the soliton half width to roughly two to three sites
(15,20, 25,34]. Further the results of Rukh er af [22] show that the stability of solitons
decreases for decreasing width due to quantum effects. However, in {22], as in the |$3)
case, a product of an electronic state and coherent phonon states was applied, but treating
only the electron in the soliton state explicitly, while in the |®;) approach the influence
of all electrons on the lattice is considered. As already mentioned, in the |$3) ansatz the
dynamics of the electrons are taken into account explicitly, while in the classical adiabatic
case the electrons are assumed to follow the lattice dynamics instantaneously.

As parameters we used the usually quoted SSH values [1] of B° = —2.5 ¢V and
@ =4.1eV A Inachain of 11 units this leads to X = 15.93eV A2, A = ~5.36 eV A for
g =003 A K =883eVA™2 4=—-456eVAforug=024and K =551eV A2
A= —375¢eV A for ug = 0.4 A, The time-step size was chosen as 0.05 fs. As starting
geometry a so-called end-kink state (#; = (—1)"*lup) was used. In this case the chain
ends with a long bond and the unpaired electron is localized at this chain end. Since the
equilibrium position of a soliton is in the centre of a chain, the kink starts to move away
from this position. In figure 4 we show the kinetic energy of the lattice together with
the total-energy error for the above-mentioned values of ug at temperature T = 0 K. It is
obvious that the fluctuations of the kinetic energy due to the soliton, movement are, though
not completely identical, very similar for the two models. Further there is no tendency, as
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one would expect from the results in {22], towards an increase of the differences between the
two models with increasing bond alternation, i.e. decreasing soliton width. Obviously the
error in total energy increases somewhat in the case of the {®,) model, indicafing that cne
should use an even smaller time-step size in this case or a better method for the numerical
integration of the equations of motion, like a Runge—Kutta or a predictor—cormrector method.
However, in cases (b) and (¢), where the soliton moves more slowly, the error in total
energy is small enough.

In figure 5 we show the time evolution of the electronic energy levels for the three cases
as computed with the adiabatic model. As can be seen from the figure a comparatively small
fluctuation of the fundamental gap is connected with the soliton movement. The soliton
level itself remains at midgap (O eV} as expected from particle-hole symmetry. The lower
edge of the valence band and, in the same way due to particle-hole symmetry, the upper
edge of the conduction band, show an oscillation with a smaller amplitude and frequency
than the upper edge of the valence band and the lower edge of the conduction band. Figure 6
shows the time evolution of the normalized staggered coordinate g, = ¥, /1p. At least for
the larger values of 1y, corresponding to smaller soliton widths and also smaller velocities,
the movement of the soliton can be clearly followed in the time evolution of the staggered
coordinates. Any differences in the two models, if present at all, are too small to be
observed from the plots. Clearly during the soliton movement, lattice phonons are also
excited. Finally in figure 7 the time evolutions of the spin densities at odd-numbered sites
are shown. -

In these plots the spin densities at even-numbered sites are not shown, because due
to the symmetries of the model they vanish exactly. If electron—electron interactions were
included into the model, at even-numbered sites negative spin densities would show up.
Also here virtually no differences between the two modeis are visible. The movement of
the soliton, having its centre at the site of maximal spin densities, is clearly visible for
the two larger uo values. In these cases the solitons have a small width and thus their
velocities are rather small. For up = 0.4 A already tendencies to lattice pinning show up.
For ug = 0.03 A the soliton is rather broad and fast so that its movement is a little bit
difficult to identify in the plot.

Thus in contrast to the results reported in [22] there is no increased instability of the
solitons with increasing bond-alternation parameter and consequently decreasing width in
the case of the |®;} model, although in {22] also products of electronic states with coherent
phonon states are used. The difference obviously is due to the fact that in [22] only
the dynamics of the electron occupying the soliton level is taken explicitly into account.
Obviously the influence of the other electrons on the lattice due to electron—phonon coupling
helps 1o stabilize the solitons in our |$3} model.

In figures 8-11 we show the same plots resulting from model calculations including
temperature, but only for two values of the bond-alternation parameter, namely u#y = 0.03 A
and 0.40 A. For these model calculations we used random forces and a dissipation term
to simulate temperature effects. Here we observe differences in the two models which are
most pronounced in the smaller-ug case. In the adiabatic model the soliton remains stabie,
however, with an increasing tendency to lattice pinning in the ceatre of the chain with
increasing time. In the |®5) model this pinning oceurs at smaller times and then the soliton
width increases, i.e. the soliton is unstable. In case of the larger bond alternation the soliton
remains stable but pinned close to the chain end in both models. However, the plots of
the energies show that these findings have to be viewed with some care. The rather large
changes in the total energy suggest that the systems are still not in thermal equilibrivm after
the 0.5 ps total simulation time. This is indicated by the time constants I" of the heat baths
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Figure 4. Time evolution of the total kinetic energy (solid line) and the error in total energy
(dashed line) for simulations in a chain with 11 units, computed with the adigbatic (left) and the
|®3) model (ight) at T = 0 K for {a) up =0.03 A, (0) 20 =0.2 A, () uo =04 A,
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Figure 4. (Continued)

in both cases, whose inverse is 2.04 ps (uy = 0.03 A)and 0.4 ps (ug = 0.4 A). In figure 12
we show the time average, given for a time-step f; by

1 1 1
A = (ﬁ > p,%)/%NkBT =72 537 2 PR/ 3NksT (72)
n k=1 n

where { and & count the time-steps calculated explicitly. As is well known, this has to
approach unity in thermal equilibrium for a decoupled lattice. Since the kinetic energy
due to soliton movement remains approximately constant, A(z) has to approach a constant
which is equal to 1 + E./(0.5NkpT), where E; is the time average of the kinetic energy
of the soliton, if it is stable. As we see from the plots such a constant value is reached
approximately only for the |@2} model in case of the smaller bond-alternation parameter.
In contrast to the numerical results one would expect that for the larger bond-alternation
parameter the thermal equilibrium should be reached faster. However, here we have a
small, compact solitor which is quite resistant against thermal fiuctvations and one would
expect that the presence of this soliton slows down the thermal equilibration of the system.
Thus it seems that our mode] for thermal effects, which is based on a thermal equilibration
of the decoupled lattice prior to the soliton start, should overcome this problem of large
equilibration times. Further it seems to be more realistic to have the system in thermal
equilibrium already prior to the start of the soliton movement.

- 8. Conclusion

‘We have for the first time derived equations of motion for the SSH Hamiltonian of frans-



911

EeV)

~n

r% %

1 zn 5 TYvCE

=3

-1

2 W Férner
W
g {a)

]

o T

T TP T TP T T ey

R md R RN RS RN R YN RRT A RER N R R

piardigaageisgletacpaareleriograry 1y

0 .1 2 3 -4

ips) '

-2

] AXARLETN III-I|||!-h||||||I|!|Ill|l|l-f|l-f|I-
.05 .10

a

tips) 15 20

Figure 5. Time evolution of the lowest occupied
electronic energy level (bottom line), the highest doubly
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level (straight line at the zero of energy), the lowest
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highest unoccupied level (top line) in a chain with
1! units calculated with the adiabatic mode! {note the
particle-hole symmetry) at T = 0 K for (2) up =
0.03 A, () ug =02 A, (6) up =0.4 A

polyacetylene, i.e. for electrons coupled to lattice phonons, using ansatz states similar
to those introdeced by Davydov for the case of high-energy vibrations coupled to lattice
phonons. We used a |$y) ansatz in the spirit of Davydov’s {[)) state, where the quantum
nature of the lattice is accounted for. The application of the quantum-mechanical |{®g)
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ansaiz state which takes into account quantum fluctuations in the lattice is'in progress, and
the results of these calculations will be the subject of a forthcoming paper.

Our calculations using the [¢¥;) model show that the dynamics are essentially the same
in this model and in the classical one, no matter how small the soliton is. Note that the
Targer the lattice dimerization' parameter chosen, the smaller the soliton. Thus treating all
electrons on'equal footing leads to results different from those of Rukh ez al [22] who treated
only one electron explicitly and found that the soliton becomes unstable, when its width is
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Figure 7, The spin density P,(f) at odd-naumbered
sites as a function of site (x) and time (f in ps) ina
chain of 11 units calculated with the adiabatic (npper
part) and the |$2) (lower part) model at T = 0 K
for (2) kg = 0.03 A, () g = 0.2 &, (©) g = 0.4 A.

smaller or equal to roughly one lattice site. Thus the effective electron—electron interactions
are still implicitly present in this approximation via the lattice equations, since the lattice
interacts with all electrons simultanecusly. The results obtained with the Langevin model
for temperature effects suggest that this model is not appropriate for PA in the SSH model,
most probably due to the large electron—lattice interactions.

The obvious next step after completion of these calculations is the explicit inclusion of
electron—electron interactions in the model. For this purpose we need a representation of
the two electron integrals in terms of phonon creation and annihilation operators. These are
given by (ST units)
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2 \2 -l e
=phj{ — RZ b= — 73
rm [(yn + Vm) H nm} 4rey 73)

where ¢ is the elementary charge, ad the dielectric constant of the vacuum, sometimes also
called the electric field constant {gy = 8.854 11 x 10712 A s V-! m™), and the y, are the
so-called on-site Conlomb repulsion parameters of the atom at site », usnally calculated as
the difference between the ionization potential and the electron affinity of that atom. R,
is the distance between sites n and m and is given by

Rum = [l = m)ag +n —un P+ (=10 = (P25 (74)

where aq is the lattice constant of the equidistant chain and y; the distance of the sites from
the chain axis which is defined by the centre points of the CC bonds.

Since the displacements are very small compared to the distance between the atoms in
the equidistant chain, we can expand the integrals in a Taylor series in the displacements
and truncate the series after the linear term to be consistent with the truncation of the similar
expansion for the resonance integrals. Thus we obtain

aa'}::m Uy + 0 Yo U yrsgl) = Yo (b = 1ty = 0). (75)

up=un=0 aum U=ty =0

Vam = ,,(21} +
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The derivatives are

8 ¥nm (V(D))3 8 Vom
ditn bty =ttm=0 b2 % Yo dttr; Y=t =0 ( )
and thus
Yum = Voo + @n — ). (77)

In table 1 we compare this linear approximation for a next-neighbour integral with the exact
values computed from the Ohno Tormula for different displacements. It is obvicus from
the table that in the region of displacements which usually occur in simulations the linear
approximation agrees satisfactorily with the exact Ohno formula.

The two-electron operator which has to be added to the Hamiltonian is

e 1 e A oA ~
H, = 3 E E VirraCrery Cmor, oy Cruary - . (78)

o1L,o2 nmt

Substitution of the expansion of the ¥ values leads then to

Hy =133 ) 00l + alls = )i, &5, Omase - ’ (79)

a7 nm



9118 W Fdrner

Figure 11. The spin density P.(t) at odd-numbered sites as a function of site {(n) and
time (¢ in ps) in a chain of 11 units calculated with the adiabatic {upper part) and the [Pz}
Qower part) model at T = 300 K (random forces—dissipation model) for (a) up = 0.03 A
(WEgT = 0.1293 &V, " = vy = 0.4909 ps~!, o = 0.6888 (eV AY), (b) ug = 0.40 A
(NkpT =0.1293 eV, I = vy = 2.8873 ps™!, o = 4.0514 (eV A,

The equations of motion, derived from an SSH Hamiltonian including in addition this
term together with the |®g} ansazz could be used to define effective electron—electron
interaction parameters which incorporate indirect interactions between the electrons. These
effective parameters, depending on the interplay between electron—electron and electron—
phonon interactions, could give rise to an effective attraction between the electrons. This
would be an analogue to the ‘negative-U’ models, discussed in connection with high-T,
superconductors; however, the effective parameters would be well defined and the role
the phonons play would be more obvious. However, it is clear that in z-pA the direct
Coulomb interactions would play the major role, because it is known that in #-PA bipolarons
are unstable against charged solitons which interact repulsively. But in other conducting
polymers, bipolarons are well known as charge carriers. Thus in such systems the effective
attraction between electrons due to electron~phonon interaction is stronger than the bare
Coulomb repulsion.
The displacement operators can be transformed to

n” n n" oa A n oa _ . a
= o =G = G — (1 — ) =y + a(fty = in) = 72 + a(Gn — Gm)

(80)
(0 _ ()

nm

as discussed in appendix A. Transformation to phonon operators gives then finally
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Table 1. Exact (312} and linearly approximated (%) values of the two-electron integral (Ohno
approximation) hetween two neighbouring sites (yp = 1125 eV, b=1439eV A, ay =12 A,
¥ = 035 A, up = 0.03 ,EL) as a function of 1 for the cases (A) u) = u, ¥z = —uy and {B)
4] = —uz = u {u is given in A and the y values are in eV).

u viz(A) LA v v (B)

046 104 10.03 9252 948
~005  10.10 10.10 9.63 9.60

~0.04 10.16 10.16 9.95 9.72
~003 1022 10.22 9.36 9.85
~0.02 10.28 10.238 9.98 9.97

~0.01 10.35 10.34 10.10 10.10
0.00 1041 10.41 10.22 10.22
0.01 10.47 [0.47 1035 10.34
002 1054 10.53 10.47 10.47
003  10.60 10.59 10.60 10.59
0.04 1067 10.65 10.74 10.72
005 10,74 10.72 10.87 10.84
0.06  10.80 10.78 11.01 10.96

% Z Z[}’;SSE “+ a(‘?n Qm)j Croy ma;cmazcnax

01,03 Bm
Z Z [ e + Zﬁkanmk(b_'- + bk):! Cray moﬁe‘mozc’w' (81)
o072 nm
a I
Api = — J (Vo — Vi)
m o 2Mﬁwk( e )

The expectation value of the two-electron operator calculated with the |dg) ansatz state has
to be added to that of the one-particle operator. Note that in this case we have to build a
Slater determinant from the one-particle states and we have to introduce different orbitals
for different spins for states which are not singlets. Further, in PPP theory the Coulomb
repulsion between the ionic cores appears explicitly in the total energy in the form

=1 ZZn¥um(l — Sam) (82)
nr

where z, is the charge of the ionic core n, i.e. in the t-PA case we have CHY ions and
consequently z, = 1. This term could be absorbed into V,, leading to another minimum
geometry on which then the phonon operators would have to be based. Alternatively one
can expand the integrals in equation (82) and add the new operator to the Hamiltonian:

= %Z%Zm[n‘? > Aok Anmi B} +&;)J(1 — bam)- (83)
nm P

In this way electron—electron interactions can be included in the model. In this term
already the modification of the electron—electron interactions due to phonons is obvious,
The electrons do not interact as bare particles any more, but the interaction parameters
are modified by phonon terms. The actual strength of this modification, however, can be
only calculated after introduction of the ansatz state. Note, that according to the previous
discussions already from the one-electron terms effective electron—electron interactions of
an indirect nature show up due to the coupling to the lattice phonons.
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Finally we want to point out the differences of our model from the electrosoliton concept
of Davydov [35], introduced for the electron transport in proteins, and later extended
to a bisoliton concept in the high-7; materials. The sSH Hamiltonian for 7-PA contains
the electron—phonon interaction in the terms off-diagonal in the electron ereation and
annihilation operators, while in Davydov's theory for proteins it appears in terms diagonal
in these operators, which is an ansatz which cannot be used for ¢-pa, since here the
resonance integrals depend strongly on geometry, while the dependence of the diagonal
Hiickel parameters on it is, if present at all, very weak. Further in Davydov's model only
one electron is treated explicitly and the ansatz is a [D;) state only, However, the case
of the Davydov Hamiltonian and the electrosoliton concept is dealt with in paper II of this
series.
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Appendix A. Lattice ~phonons

To define the lattice phonons we have to start from the potential of the decoupled lattice as
a function of the displacement coordinates x,, which are measured relative to an equidistant
chain of length (N — Dap with gy = 1.212 A, leading with a dimerization parameter
#g = 0.03 A to the geometry of undoped polyacetylene:

K N—1 N—1 K N-1
V=7 ;m — 1) — A ;(un —tngr) =5 D (n — thns1)? — Al = un).  (AD)

R=]

For definition of the phonons we have to find the minimum geometry x5 of this potential.
Thus we have to differentiate the potential with respect to u,:

av av
- = - —A
2 Ky — ua) 2.

av
—— = ~K{uy_p —ux) + A
auN

= K{(—ttp_1 + 2 — ttps1)

(A2)

Now we have to solve the system of equations

=0. (A3)

au" Up=Wf

From these equations we obtain

n

W =ut — (n— 1}% | (A9
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corresponding to the equidistant chain of length (N — 1)(ao— A/K). The parameter 4] can
be chosen arbitrarily and just corresponds to a translation of the whole chain which does not
change its potential energy. Now we define new displacements relative to the equilibrium
geometry g, = u, — i} given by

A A
q‘,.,=114!,-,‘E‘(f‘l—‘l)'.l,'sl—,‘—l'.&'-‘l3 un=4n"'(n_1)"f+utl"' (A5)

Thus we have u, — 441 = gn — Gny1 + (A/K) and we can define a renormalized hopping
integral B via

A
tans1 = B° — (Un — tpyi)a = B* — 2%~ @ = grr)e = B — (gn — quei)er (A6)

with 8 = g% — (A/K)«. Substitution of #, — u,4; into the potential yields

4 A 2 N=1 A K N=i .
= 2 ;(Qr! QH+]+ K) —Ag(qn—-qrﬂ_l -|—-E-) = —z—rg(qn—qn_!_l) +C
A7)

with C = —(N — 1)A?/(2K). The phonon operators are now defined in the usual way with
respect to the displacements g, = 0. Since for the momenta p, = M{du,/df) = M(dg,/df)
holds, we obtain

=Y VRCMwVulbi +5)  pu=iy MR /2VulG —b).  (A8)
k &

The translation u% can be determined such that the starting geometry {g{®} has its centre of
mass at zero. From the starting geometry {a(m} we obtain finally our transformation

Gn = lin + [n——(N+1) Z . (A9)

Appendix B. Derivation of the Lagrangian for a three-site system

The general structure of the different terms in the Lagrangian can be most easily visualized
by deriving them for a simple three-site, three-electron system. In this case our ansatz state,
formulated for spin orbitals, i.e. each orbital is occupied by one electron and contains a spin
function, which we do not write out explicitly, is given by

)= cntCnatnEh a0} el Bumt)

nmi

(B1)
|Bumt) = exp [ =33 lbne + B + bmslz] exp [Z(bnm + Bt + bm}b:] [0}
k k

+

where & i

creates an electron at site z in spin orbital j. The Lagrangian is given by

in 3 ?
L= "2-((‘1) 5;@)—-(-87(1)

q>)) —~(D|H1D). (B2)
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The time derivative of |¢) can be straightforwardly computed to

d ] . .
a‘p = E z {En1CmaCiz + €1 Cmacs -+ Cn1Cmatss
aml &k

— dem1Cmacnl(Bakt + iz + blk3)(bnk1 Bria + blis)

+ Buet + btz + buas) By + B + Bi)] :

+ CnyCmac3 Bt + Btz + bxka)b+} EnmaCr10)el Brmt) - (B3)
The expectation value formed with (| and using

(Bt |57 1Bumt} = By + i + B (B4)

is given then by

(#

d . 2 2 . .
5¢> =3 [enichlemalPles® + len Pémacs lenl® + lent Plemz ércis]
nrd

+3 Z |n1 [Plema Ples]? Z[(bnkl o+ Bk + by By + B + Blis)

nmit

— By + B+ B}3) (Bt + bz + bu)]. (B5)

Now we can write the first term as a single summation over spin orbitals j and the second
term can be split into six summations according to the time derivatives occurring. Further
in these terms we interchange surnmation indices, and finally, with the definition

X;= ]_[ (Z [Crpr |2) (B6)

F#Ei s> n
we obtain
d . * *
(¢|§CI)> = chjC:ij 3 Z { Z |€at] bnkllcmzlzfcﬁlz(bnk] + b0+ Bis)
i nml
+ Z |caz*Baralem Plen P (Bl + Blig + Blia)
nml
+ Z ECnBIZBnk3¥C11]2|Cm2|2( Fkl + b;zkz +b:k3} - (CC)}- (37)
nmi

Here the symbol CC in the curly brackets denotes the complex conjugate of the other terms
in the curly brackets. Now we look at the first term in curly brackets and split into three
summations (T1):

Tl= Z |Cn1{26nklb:m Z |Cm2]2 2 [nglz
n m !
+ Z €t P [ Z [z Bk Z el + Z em3 | *brmks Z |sz|2:[
n m ! n t
= 3 " lent Pberbl [Xr+ D lemp P X ,} (B8)
"

™ il
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We obtain such a term from each spin orbital and thus we have
] C w -
(@ a—z-fp) = chjcnjxj + -12- Z { Z ]anlzbnkjb:ijj
nj k njf

+ ) loni Pl Y Y lemp Pl Xip — (cc)} (BY)
ni m fi#E]

with
X = 1 (Z]an”lz)- (B10)
JELT n

Therefore with

a 3 *
(zele) = ({ef) @1
we obtain .

i a ] in s e e
£ (fg)-{2of) -3 Do

ih : .
+3 { Z [Cnj Izbnkjl: ki X+ Z Z [Comjr Pl ij’]
k nj

m j'#f

—_ Z ;anlz‘b:kj[bnijj + Z Z lcmj’lzbmkj’ij']}- (BIZ)
)

mj#ES

Finally we perform the spin summations and obtain
i ] ]
—({P|—P} - {—D
> (lelo)- (5
iR . .
+5 > { > 0jlen bugy [bnijj + Y (op ~ 3;';')|ij‘[25§:;:;ij}’}
k nj mj’

— ZOJIC@FE:H I:bnijj + Z(Ojr —_ jj:)lcmjllzbmkj:ijz]} (B13)

P " mj

i H * ¥
(I))) = -2— %:qf(c"fcnj - anc‘nj)X_;

where j, j’ run now over the spatial orbitals only and the o; are their occupation numbers.
X and X read now as

oy =8y 0B =81 g
x=1] (Z 1%"52) X =11 (Z ]an"lz) : (B14)
J* n

i "

Note that X;; is not equal to X; in the case of spatial orbitals which might be doubly
occupied. Note further that terms X; and later on their derivatives cancel out by the factors
(ojr = 8;;7) in the summations.
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Now we have to evaluate the expectation value of the Hamiltonian with |®). For this
purpose we start with the phonon part:

I;fp = Zﬁwkgfl;k.
P

We use the fact that a coherent state |By,:) is an eigenstate of the annihilation operator w1th
the coherent state amplitude as eigenvalue

18r) = [ ] 1Bric) =
kr

Skmﬁn>=(2bn,.k,-)|ﬁn> (Bulb} = ﬁnl(z ) ®B15)
J

Thus we obtain

(®| Hp|D) = Zm 3 lentPlemal*lers*{Balbf belBnd

nnml

= Zﬁwkz lewt Plemal* e (Bl + Bluia + Biia) Bukt + btz + bus). (B16)

nml
The first term in the first bracket (71) gives
Zhwkz lom Pbly [bmxl 0N lewmpd bmkfxl,] ®B17)
m ji#l

From the remaining two terms in the first bracket in {B16) we obtain similar confributions
where e.g. T, reads after exchange of summation indices

L= Zﬁwkz |cnzl bnkl]: i X + ZE [emp| bmkj'X?.J:' B18)
m 2
Thus altogether we have
(®| Bl D) = Z‘m Z lews 128, [bmgx + Z; |emjr B Xﬂ] ®B19)
m ]
Performing the spin summatiqns leads finally to
(@1 By D) = Zhwk > " ojlenl? b,,,c_,[ nig X; + Z(o, — 81 )| |"bmay X ] (B20)
nj mj’
For the next terms we need the expectation value

(@15l ®Y =D lensPlemal e (2 (Brit + brz + bypa) = D [cnj *buty X; ®B21)

nml nj
or in orbital form

(@1B|®) =D 0)lci*bay X; (®|5]|10) = Za,[c,,,ﬁ wyXi (B22)
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Further we have to compute overlap integrals D(by, b2) = (B(61)I8(b2)}, where b =
bkt + bz + bys) and, e.g., 82 = (brara + bz + b1ia), O

D(b] , bZ) =p (0[3_“/2) el Ej bﬂjkjlzezjj b:jkjsk e—-(lfz) 2l Ei b"j"'"jl.kj 12 ez*f b,,l._,.aﬂlkﬁz' Eo)p' (B23)

In general such an overlap between coberent states is given by

D(by, by) = exp [— %—Zk:(lb; — by[* + bib, — b;bl)]- (B24)
For our example we obtain from that
D(by, by) = exp { -1 Zk:“bnkl — Bt |2+ (Bl + Vs + B ) Bt 1 + Bniz + bus)

- (bnkl + bmkz + b:‘k‘s)(b:.;.ml +‘ kz + blks)]} (st)

Now we can factor out a term
Dy pyr,; = exp [ - %;(ibnkj — Bus il + By ibrir ki — bnkjb:+1,kj):| (B26)
leading to
D(b), by) = Dy ny1,1 %P { -3 Z[b:kl(bmkz + Bus) + Blpn + b)) Bupt et 4 Drrz + brz)
3
= buk1 Bz + biis) — ez + bus) By 1 + b + b?k3)]]

= Dy ni1,1 €Xp { -1 Z[(b:klbmm + bpiabatr, k1) — Bria bppn + bniabn g 1)) }
p

X exp { -1 Z[(b:k:brka + blisburii1) — Buiabfs + b!k3b:+[,k1)]] B27q)
%

and finally
D1, b:) = Dy 1,1 D2 L D2 L1 (B27b}

or in general

D(by, b2) = Dppst,j H D} J.r:-Ji-l J (B28)
J'#Ei
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where

Dy py1,; = exp [ - % Z[lbnkj — Buyri P+ B ibni1e; — bnk,rb:+1‘kj]}
%

D:;’ = exp { - 51_ Z[b:kjbmkj' - bnlcjb:;kjf]}

DY =DM (DY ) i
(B29)

1B(b1)) = exp{ }exp {Z (an,.,k,-f)ézllmp

js

7y U'Cj

k
2
180 = exp f =1 32| by + by Jexe{ 3 ( an,,k,-r+b,,,.+l.k,f)£:}|0>p

ko Ly kN
D{b1, by) = (B(01)| (B2)).-

With this we can compute the expectation value of the inter-site interaction past of our
Hamiltonian e.g. for electron 1:

(@1 EhyGwarn + 8y G| DY =3 Y claChaCiCutCmacrs (B(nmd) Ersmabny

n nml a'm’lt

% Z(c et + Gy 18085 88 B m T

nr

= 3> lemalPlessPPeyycnt (BlnmI) en

ml nn

X Y (@E et + &gy 1Ew)EL 1B ml))
nrr

= Y leml’len? Y [ehenrr 1 (Blamd)|B(n + 1, mi))
ml n

+ Chur 16nt {8 + L, mI)| B(nml)}]. (B30)

From this, together with the overlaps between coherent states, we can write this part of the
Hamiltonian function for an arbitrary number of electrons as

E iCnal, i Dnnt1, i l_[ (Z!le /| Dnn-%-u)

FEF N m

+ ch+1 JC"J ntin,j H (E!C"U'I Dn+l n )) (B31)

iEisom
For the products we introduce the abbreviations

Py = ﬁ (Z ey 2Dy, )

F#EP s om

hH
2y = (Tlew20tsn,) =

FEF Y m

I —
f’ " (B32)
[
JET

_[Zlcm, 2oy oy ,]

mn



9128 W Forner

Now we want to discuss one of the electron—phonon interaction terms:

(@D (Ehéns1n + &y 1Ea)Bel®) = Y hiCns1.1 Danstt
n n
2Dm2 EZDE] b B b
X ) leml Dinaan 2 et D 1 1 Bnsi i - Bimie + bia)
m !
- 2 2 23
= ZC:;]Cn-i-l.]Dn,n+1,]bn+1,k1 ZICmZI Dy Z|Cfsi Dy s
n " I
2 pym2 23
+Zc:lcn+1.an.n+1.lzlcm2| D:r?,n-}-l,lbmeZICBI Dy i
n m I
2 ym2 2103
+ ZC:1Cn+1.1Dn,n+1,l Zlﬂ'mzl Dy Zlctsl Dy i11b1s- (B33)
n m I

From this the general form of this kind of term can be deduced:

(CD] Z(E:}En+l,j + E:+1,j6n})bk|(p) = Zc:jcn+l,an,n+I,j
nj

af
X [bn+1.kj Pnj + Z Z fcmj; izD:‘J{:-!-l,jbm-kj' Pn_u'] (B34)
m 'S
v
S
frEi g m

Finally we obtain for these parts (H,) of the Hamiltonian function in spin-orbital form

H, = ﬁZ[ Cn+lanrt+l._,rPn_,r +Cn,r nt1,J n+1n_,rP}

+ Z Z Py By {C; iCntl i Pn ot j l:(bnﬂ & bpg;) Prj
nj  k

+ Xm:_é: lc”” ‘ZD”U u+1 J)*(bm"ll + bmk; YPuyj }
f

+ CujCrir,; Dt [(b:H.kj + buij) P

+ Z Z |Cmj lz(DmJ n+1 i G + Bkt Py :| } ®3

moprEj

Note that here the orbital indices run from one to v, the number of singly occupied spin
orbitals. Further

He = (DH]|®) = (®] ) [ﬁ + 3 R Buby + _5;')] @intt,i + Gy Gl P). (B36)
aj k
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In orbital form H, is given by
He ﬁzoj Cn_}cn-!-l_,an n+E;Przj +Cn_rcn+1 JDI’H‘I "JPPZJ]

n

+ Z:of Zhkank[c Cnad,j Daatl J[(bn-i-l ot bnkJ)Pn’l_]
nf k

+ Z(OJ" - Sfj')lcmj'lzD,’:; 5.}.1 J) (bmkj + bm]q )Pnu :|
mj’

- ancn+1 _;Dn-i-l n.j I:(bn.H i +bnkj)P:j

+Z(a,-au);cm, POy DM, (B + bk ,,”” (B37)

where now the orbatal indices run from one to u, the number of (singly and doubly occupied)
spatial orbitals. Further the products P are given now by

" l'_&
nyy = Z lemp [ Dpy (D;znil 5 Fuj = 1_[ Qn_u

= (B38)

rJ =Gt =8t o1
Prjje = 1_[ Qrw YN = By [ Qujy Pujjijr = Prjl(Qngjr Qnjj)-
Terms wnh possibly occurring negative exponents in the products P and their derivatives
cancel out via factors (o — &) in the summations. With this all terms in the Lagrangian
are caleulated, and we can proceed with the derivation of the equations of motion for the ¢
and the b values.

Appendix C. Equations of motion, conservation of overlap and Lagrange multipliers

Here we have to show first of all that our Lagrangian conserves the norm of the orbitals.
This must necessarily hold, because the Hamiltonian conserves the number of particles.
Conservation of the norm implies that we have to show that X(t) = N;(¢) = X;{t) =
X;y(¢) = 1 independent of time, provided that the orbitals are normalized in the initial
state, i.e. N;(z = 0) = 1. This is equivalent to showing that (dN;/d¢} = 0. For this purpose
we start with the Lagrangian in orbital form. The Lagrangian is divided into several terms
which then can be differentiated step by step:

a - .
L=Y 1, (C1)
n=l
with
in : "
= E %:aj(c,,jc:j - C"jC,,j)Xj
i : . .
=7 3 { 3 Of|Cnf§2bnkj{ nii Xi Z(OJ 6fj’)lcmf’|2bmkj’ij'] (C2)
k nj

- Z 01 leni B} [bnijj + E(Oj' — 8y MlCmp |2bmkj’xjj':| }
nj

mj
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Further we have the terms arising from the Hamiltonian:
- ZTE&)};{ Z OjEan Izb:kj I:bn]q‘Xj -+ Z(Oj-' — ajj’)[cmj’ I?bmkj’ij’} } (CSQ)
k ni iyt

* * * *
Ty =— ZOj{ancnjcn+l.an.n+l.anj + ynjcujcn.g.l‘an-i-l,rzj Pnj}
nj

yui = B+ ZT’I&)}: Bu(brv1,4j + Byy)
T

{C35)
DJI—SHf
j = 1_[ [Z lcm!’iZDW (Dn-H ,r)*:|
and
I5=— Zﬁwk Z B.10;Cyicnt1,; Dpons, g
nj
x Z(aj, — 81 ) emp| D"“' (DH_, Y Bsie + By Py (C3¢)

Finally we have the term T = T;". Now we have to build the equations of motion for the
¢ values from the Euler-Lagrange equations of the second kind:

d 9L 9L
rr 9
nj nj

This leads to

ﬂf—SJf

oL a1 in

T A ke A "fc”’ H (Z font '2)

7

d oL in (C5a)
T30 = 7 Un X o X))
nt
where
d oy =yt
=& (Sewr)
¥ m
»ua” —J!ff_rf
Z(oj, — 8} emprcre + cmj,cm,)]—[ (Z |€me jol )
mj’
=) (05 — 8 Y impCi + Cnjrmy Y Xy (C5b)

mjt

As the next step we have to differentiate the individual terms in L with respect to c;;. For
T this yields

3Ty _in

Xy iR, i
W,’:,- zo,can + ZOJ ("—'mf“mj mJ,cm_,Ja 3 —EOanij'*'EAjOanj. (C6)
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Together with

% 5t — iy e Sl T o)
Bcnj Iz acnj m "

R
J

it —SJme —8 oy

= Z("f" — 88w jeni Xy pr = (0 — Sy )eni Xy (o))
j"

we can define A;:

oy J#T

Qj
—0-"-3.' = = io— i
oj(.l i) {Oj_1=0j,_1 j:jf] (0 — &)

(C38}
= Aj = Z(Oj' - ajjv)(émjr(.‘;jr — c',';,j,cmjr)ijr = 2ilm [Z(Ojl - ajjr)(:'mjr(.';jr jjl:].
mi' mj
Thus vector A is imaginary (A} = —4;). The derivative of T> we split into two terms, the

first one arising from d1fferent1atlon of the factors at the X; and X, the second one from
differentiation of the X values, leading to

T,

3% (B,.U + C)lojcy; (C9)
with
:Ti% _ i:CJ 0;Crj ojc,,jZ{(bnkJ i = nk_r buk)X;
+ D (05 = 8 Busibrgy — bty BBty — BBy )Xjf’} (C10)
e
and thus

By=3, { (buk By — By i) X
k

+Z(0j'——5j,f')|€mf' P(Buk by — Bl omyt-B Bniy bﬂkféfnkj’)ij’} = —By;
(C11)

and therefore matrix B is purely imaginary. By differentiation of the factors X; and X
which yields

9X; X jr
?ﬁfj = (o7 = 8jj)enj Xy A c": = (9 - 8y — & dewi Xy i

Xjjjr = n (Z [emje|

lﬁ'

)(}Jm _51”'1 ——Sjtt:jr-—ﬁjnrjﬂ (C 1 za)
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and
3T in Xy
3 *2 = Brjgjcnj + ZZOJ’]’:MJI {(bmkj' k! bmkj’ k)T
cﬂ] 2 ke m]l acﬂj
2.7 % aXJ'JJ'H
+ Y (05 = 8 j)em jo >t Blgg o — Bt bt e (C12b)
m! nj

and since one can easily show that

Z B"(OJ" =~ 8 )05 — &y = 8y Ay = Z(OJ” = 8 Moj — 8pj — &pym) Ay (C12¢)

N

P 7

holds, where A;y » is any arbitrary argument of such a summation, we obtain
= ZZICW /| {(01' — & }(bmkj'bmk_,l bmkj" mk,r")ij'

+ Z(OJ' = &0y — = &t} Gt Bty ki bmk,v'b )X jj J”}

= -c; (C13)

and thus vector C is also imaginary. The term T3 leads again to two terms D, resulting
from differentiation of the factors at X; and X, and E, from differentiation of the X
values themselves, where

Dy = Zflwk[lbnul X; +Z(0;' — 83 M my > Bt By + nkjbmkj’)xjj’:l = Dy,
mj’
j== Zhwk Z [cmjr 1 bk [ mkj (OJ' — &) Xy
" (Ci4)
+ Z(OJ" — 83X 0y = 855 — &y ew o |*b 'k..'"XJ'J'J":| = E}
m J”
%

3' * (Dn_,r + E; )O;an

Again, both terms are real. The differentiation of Ty can again be split into two different
terms, one resulting from the factors at the products P, the other one, F, i from differentation
of the products P. From

a7y
* *
70 = % WiCnt Dnns1.j Paj F Ve jCnt, D1, By )
nj
8 Prj 3Py
- Zoj Ym_;'cmj'cm-i-l §mmt act, +}Imjlcmj’cm+] J--'Dm-l-l mj’ 3 *
mj"

(C15)
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with
erynt =8ir e m " m' _i' . Gy “5_;'_,"
ijf = H[me'j”] 7 = H Z Icln' o ijr (Dm+1 5 )
j" J ml

A0mp '
T, 10 Dy (Dl Ve

(C16)

BP Qe
mJ' = Z(OJU é:r ju) % I—[[Qmj j”’]a 111—5 2 jie —SJnJmC
nf m i

= (0} = 8i7) Dy (Diyy 1) Py jnj Prpj = H[QW’J”JM_ S

we can write these terms as
Ty

—_—=
0cy;

Fr:j Z(OJ’ — 6.” )[VmJ’CmJ:Cm-i-l j' m nslel J’Dﬁij (Dm+1 Jf) ijj (C17)

mj!

* * f
=0;[VnsCn+1.i Pnnv1,i Poj + Vaoy, jCn—1,i Pnn1, Py ;1 + Fpj0i00)

™

+ ymj’cmj’ m+1 ;’DMHMJ (D ) Dm+l Phmi _;] Fnj'

From the term T5 4 Tz we obtain in a very similar way the terms

AGCnt1. + Gy jonmt.j + Fricny] (C18q)

where from differentiation of the first sum over ¢ values in equation (C3) we have

G, = - Zﬁwkgnan n+1,§ Z(oj 3}; )lcmj | D (D,H_[ J) (b:;kj, +bmkj’)Pnjj’

it

(C18b)

while the second summation and differentiation of the products P yield with

Bij i (O e — it =y i1 rrr)- M P T
J ] ST act mi'y
m - an

Cig
= (05 = 8jj — 852 Yen DDy ) Projrjo; (Ci3c)

m—& m—8r o & i 210
m) .U” = ]—I[QmJ J.w]a 5 4 .'”J” — mj’/(Qmj'ijj’f”)

the factor
F;:_‘; = _Zhwk(b:kj +bnkj) ZBmk(o_} SJ_] e mjfcm+l.J’Dm mt1, }'Dm_, (Dm+| N ) PMJ i
k nj’

E3
m—f—l J'Pmu}

—_— Z?ZCU}C Z Bmk Z(«Djr —Qp; = JJH)(OJU — ”n){(,‘mnf,'I (b ik +b 'kj")
g’ ntt ¥

ni
+ Cinj'C:f;-f-l j'Dm-i-! mj (D )*

X {ij’cm-I-l #4Hmm+1, ;’Dml (Dm+1_, )* f(Dm.H W )* mi'j"§
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With Fy; = Fl, + F,

an = _ynan,n+1,anj + G;‘J

(C19)
and
aL i,
30 =0 [Ecanj + Hyjenj + Grica,j + G:_l_jcn—l.j]
ni (C20)
Hy= —(A +By+C+ Dy +Ej+Fy = H*
we can write the equations of motion (divided by o;) in the form
. iR .
hénX; = -3 Caj ZK,,ijmj
P (C21)
Knmj = “Hnjanm - ansm‘n+1(1 — &u\’) —

r:—] 7 mn—](l nl)-

Thus the matrix K; has real diagonal elements, and only the first off-diagonal ones are
non-vanishing. For these elements the following holds:

Kn.n-l-l.j = _an

Knsrnj = Zé‘m.nﬂ Km.m-l.j = —-Z Omnt1G 1, = =Gy (C22)
m
=Ky, = K=K

Therefore, since Hy; is real, the matrices K; are Hermitian, i.e. Kpnj = K,

mn (K = Kj‘)
From this we obtain for the norms of the orbztals
- .. d . e . ok
inN; = 1?15 Z ChjCp; = Z[(lﬁcnj)cnj - (—Jﬁcﬂj)c,,j]
n n
X'
= AN; = ~inst N + = E(K,,,,u.c,,,,c,U — K G i)
A1 (€23)
Z Knmj m_rcﬂJ = Z mﬂjcnjcm.f Z Kﬂme:jC"lf
nm

. . . d
= Nij +Nij =0= a(.NJ,XJ) =X = E(HJNJ) =

Thus the product of the norms of the orbitals is conserved. From this we obtain the equality
N;

%-=-— X:O‘—‘}X(t)='X(t=O)=1 X=Xij$1=>Xj
f i

2‘»—*

N;

" (C24)
= iﬁéﬂj = 'E‘ATCM + N; ZKnmjch
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Let us assume that we have found a solution of the equation (which follows also from the
substitution c,; = (N;)"?a,;)

iéy; = N; 3 KnmjCnj- (C25)

From (C25) follows

BN; = N; > (KnmjCniChi — KipmjCninj) = (C26)

nm

Therefore a solution of (C26) is also a solution of (C24), since it conserves the norms of
the orbitals and thus N;(#) = N;(z = 0) = 1 and (dN;/d?) =0.
Thus we are concerned simply with the equation

Bic = 3 KumjCoj- (&2
m
Now we could partition H,; into two terms Hy; = Z; + ¥,; with

in 1]
Z;i= ?Z—(Aj+Cj)+Ej Ynj =Ean+Dnj+Fnj. (C28)
Because Z; is real and is simply multiplied by c,; on the right-hand side of the equations of
motion, we could remove it from the equations by a phase transformation, i.e. the orbitals
resulting from solution of the equations without Z; would have to be multiplied by the
phase factor expfig;(¢)] where the phase is given by

1 )3
OEE fo Z,)dr (€29)

and could be calculated during the simulation by numerical integration. However, since our

equations as they are do not conserve the orbital overlap (see below) and Z; contains time

derivatives of our unknown functions this transformation is not appropriate at this step.
Now we are in the position to compute the time desivative of the overlap matrix:

lﬁSU =ir— (Zcmcru) = Z[(ménj)c:i — (—1Aéy;)q]

o * *
lﬁSz‘i = Z(K“mjc’"jcﬂi r:ml mlc"J) = Z(K"ml RM5)Cnicmf'
nm

(C30)

Since all terms in K; depend on j, our equaitons of motion conserve only the norm of the
orbitals, but not their overlap. Therefore, our Lagrangian L leads to equations of motion
for the ¢ values which conserve the norms of the orbitals, but not their overlap. Since we
deal with fermions we must force our system to overlap conservation by introduction of
Lagrange multipliers s;;. Let us denote the orbital overlap by S. We have to deal with a
modified Lagrangian (in orbital form)

LU'=L+iky e:(Sy— &) (C31)
gl
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and the equations of motion

d aL’ L d 8L
TR " =0 wE T ol 3w =) =0

C32
d ar’ aL’ - d 8L gL -0 (C32)
de 36}, ab,,,g dt 3b%,,  dbny

Now let us denote all terms on the right-hand side of the equations of motion, resulting
from differentiation of L alone, by A,;. Then we have

in
Iﬁcnj = An_; - S:I(Z leamnau) = Anj - O_ Zejlcnl
J Jo
—ihély = AL + 5 IZE;:,C:;, (C33)
Ap = Z KamjCmj-
n
From this we can compute the time drivative of the orbital overlap § as
RSy = Y (ihéndchy — (—1hés)en]
f

in in
—_ . * —_— * I T . * s * * .
= E (A,ucnjr Aanan) o E ijcnfcnj" P E ajr[Cnfan
n 7 onl T nl
. . gjr " Ely "
= ifixp; — ik E = E EntCpyr = E ChiCnj (C34)
! 0 %" u

where we have defined
ixy; = Y (AniChp — Anpn) = 3 (Knmj = Kumyromichp. (C35)
R nm

Since we demand that our orbital overlap should not change in time, we have (where 0
denotes ¢t =0)

Spy =0 Z SCn = Si7(0) ZC Cmt = St (0) (C36)
and thus

=xpj — Z [ S (0) + —-S,J (0)} i (C37)

Since at the beginning of simulation we have orthonormalized orbitals and thus §;(0) = &,
this leads to

81t St Ejpr
E Ei—— + ghy=—} = xprj = = +——-—x C38
- ("I o; o 7' o  op s (C38)
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Use of the hermiticity of g, which results from the hermiticity of § and its time derivative,
yields

1 1 99
gin| —+— | =Xp; = &jpr = Xirj. : i C39
" (Oj Oj') T oy ™Y )

Since X is nothing else than the time derivative of the orbital overlap obtained above from
the equations of motion without Lagrange multipliers, we get the final expression

i )0y
ajj' = EO + 0_, ;(Knmj’ - Knmj)cmj
i ojop
=T 0j i{-JOJ Z:[(Hn"’ — Hypdenjinye + (Gjr — Gujdent1.i€ o
+ (G*—l,jt‘_ Gz—l,j)cn-l.jcf.jfl- (C40)

Thus our equations of motion are

ihénj = E Kamjcm; + Z Rjjcny

R_,r fr= - [Z[(Hmf - mj)cm_,lch + (G — Gmp)omrl, _,'ch- (C41)

o+oj pm

¥ *
+ (Gm_l‘jl — Gm_]'j)cm_.l‘jc;ljr].

Now we have to derive the equations for the » values. As first term we obtain in orbital
- form

oL 3T; ir
— =2 = __oflcnflz[bnkj + ) (07 = 8)lemy |2bm;q-l. (C42)
abn bnk; 2 mjt

From this we obtain further

d 3L iT’l ]
ar 3. 5 Y% (CajChy + Crplnj) [ nkj E(OJ Sfj’)lcmj’Izbka’]
nkj mf

- —ojlc,,jl Z(of — 81) Cmp i CnCmir Vo

mj’

ih
- onlcﬂjl l: nkj Z(aj’ — i emp| bmk_;} (C43)

mj’

From the derivative of L with respect to b}, we obtain the following different terms:

AT,
1 _q
Bb,’j
aT: ifi 3
*2 _Ochnjl [ ik - Z(O‘H — j-’)lcmjtlzbmkjl] (C44)
ank 2
aT:
2= —ﬁwkojlcnjlz[bﬁkj + ) (o — &) |0m1’|2‘z’""‘“’"}'
abnkj mj'
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The contributions arising from the differentiation of (T4 4+ T5 + Ts) we partition into four
terms, The fiest one, T(1), is derived from differentiation of the directly occurring b*
factors:

T(1) = R BriCnt1,; Dpnar j Puj + Bpi kCn=1,jDnn—1,j Pr1, j)OjCﬁ,-

3707 — 87107 ns *Peon Bkl Sl Cmns . Don st D (D 1" P

e’

+ CmpChst Dot Do Dt Py (C45)
The term T(2) arises from differentiation of the Dy, ny.1; factors, ie. from

ap o
%ﬂ;;f__: [bn+l,kj3mn - ‘%bnkj (amn - 8m,r:—1 )]Dm.m+l,jajj’
ki
" (C46)
Dmitmi _ 1 s i (Gm — & D )
T = [Bnot kiOn.mt1 — 50nki Bmn — Om,n=1)1Dmat,m, 855
we obtain
T(2) = —0;{(bas1) — 30ak)C o1, s Dnntt st s — 30ukiCamy 162j Dam1 i Tne1.nj
+ Brr 4 =5 b?‘tk_})c 1Cn1,jDrn=1,; 5t — 3bnkiChyt, 7€niPnttni Ty pr i}
{C47)
with
Pratj = BPanwj+ Zﬁwkank' [(b:k'j + bn‘k’j)Pnn'j
kl
—+ Z(Ojl — 3jj,)|cm,j,|2Dn”‘jj (D ) (bm,;_,r o = B ) P a7 i| (C48)
m'j"

s L =5y
— 2y nJ ok
Prm’j'—l |1:§ :Icm’j’l D,;j (anj )-] .
jr ml‘

The term T (3) results from differentiation of factors of the type D’”J (o " J)“. With
]

m' 1 ] '
3" ijf = [—'z-bmrkjﬂﬁ,,majjl + ibmkjranmrajjﬂ] ijr

nkj

{C49)

m' j’
ab (Dm+1 JJ) = [2 'k’ nm+18u’ - 'bm+1 i nm’au”](Dm.;.] J* )*
nk,

we can evaluate

T3) = Zoj Zﬁwk’{ mk meCmH F i mma1, Z(Qr"’ — &y J”)lcm';”| [(ab* sz )

mje

x (Dm+1 W )+ ij ab* (Dm+l ]') }(-b;’k’j” + bk jo) P

+ Bk CmjrCpppr, jr D1 m,jr Z(Oj" — & p)lem o 1? [( 35, (D )Dﬁz-l{l.j’

m}Jﬂ

. D
+ (ot o m+11:|(bm,k, or + Otk o) Prky } (€50)
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as
TG =-1) orlo;— - 8w 2 thmeH (Bt — B i)

mj’
g [C* -;Cm.g.],jr m,m+1, j an (Dm-H g ) PmJ'.I
—_ ijfcm_z_] J.'Dm+1 mr.f (D ) Dm-{-l j'PI:jj](bnk" 'I'b;:k, )
+ 13 050y — 8p) lemy| Zﬁwkr(bmk: + B p Vomiy X i (C51a)
mj’ .

where
T = Bulc®icart ;D D"” (D™ Y Py = i (D"‘f y D™ 1
am, jj! nkf Ll yjentl, j L0 n+1.§ 1, j A nif njCprl, j Dy i P’I-HJ' H}_,'

— By k'[cn 1JCn_,an—1 n;D:u] J(D ) J A

_Cn—l,jﬂ'nan,n—l.j{ ,,_1 j) D ,r;--] _,-_,] (C51h)
This can be rewritten as

T(3) = —h; (k) — Zw,,, myr bk (C52)
with
A (k) = Zo, (05 = 8w ? Zhwkf Buteutr + Bl Y Bty — bt i)

mj!

X ;:Cm 'Cm+],_,v-’Dm m41 _}"D (Dm+1 J") ijj

— ConChpy j Dt p (DY DYy 5P ] (C53)
3}y (B) = —30;0p = 85)lemp | Zﬁwkr(bmy, A B ) Tl i (C54)

It remains to determine 7 (4), which results from differentiation of the factors Pn; and Py
For this purpose 7 (4} is split into two terms. First of all we have

3 Py 3P*
T'(4) = _[Zol'cm_r'c”"l" 7 Dmomett j Ymp o7 35 + EOJ'C”"J'CMH J’DM'H mj Ym, an* ]
mj’ nkj mj’ nkj

(C55a)

where y, is defined in equation (C17}. This leads to

aPm_r o =gy
R

*
nkj g

I 2e Ty’
=3 E (0j0 — 8j5) E B | Ot o] [D,U- (D,,+;, 1Y PrjirBum
I m

ﬂ—! J(ij )* n— I_u"am+1 n]sﬂ

+ 'i(oj JJ’)D (Dm-}-l Jr) Pm_,'j(bmkj = Unm41 k_f) (CSSb)

T'(4) = —h;(k) — Z% i Bty , (C56)
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with
1 i .
hj =3 E"i’(oj ~ 8;) By — Bt )€y Coniet, j Dom st Yimi Dy (D::jﬂ,f')*}’ mj']
' mJ'J
— " . *(Dhj)m P*. }
i C o, j LM 1 mf Ve A o m+[_,r’ mj'
" l
O)n}-'mj; = 'i (OJ" - 3}]')[61:; Crg.l,.] J'Dﬂ n1 JquD (Dﬂ+] J) P”jjf (CS?)

P I mi\x x
crz,rcn.f.],an-l-l,n_(ynj(Dn‘ ) Dn+| JP’UJ

*
_cn—l.jcnan—l.njVn-l d .r:-lj(DnJ ) Poy,jj

+C?1 IJC Dl’l n=-1 J‘yn-[ J'(DJ’Z IJ) ij ’;.—] .U]

The [ast term is

T"(4) = — Z oy Zﬁwkr Bui ¥ (05 — 8pjo)em pr P Bhpge o + bt )

mn’ Frr
aP f ll w I Hi aP
x Cm_,u'cm-i‘l J'Dm; (Dm+1 5 ) abmjj + Comjr Cm+1 W (D ) Dm-H N3 ﬁ'{_
oL nkj nkj
(C58)
where
aPm st i
abnk! = Zl’: JZ: ij -_— ajﬂfjf -_— j.ngrr) ; lcm"j-'-’f Iz[bm"kjm (5}7:-{—1,1’! -_— {Smn)ﬂjjl

+ (bmkj’ - m+l,kj')3m"n5jj’”]D:j'j (Dm+i ;) F mi’ i €59
Evaluation of (C58) with the help of (C59) leads to

T"(4) = —Ay (k) — Zmﬂ "y ) mis (C60)
with
AGES EZo, (o — 8y )05 — 81 ~ B1m)ens Pl e

mJ m.’ o
X Zhwk" Bmk’ (b;’k'j” + bm'kfjf:) (bmkj’ - bm.i.l'kjl)
kl

x [C;jlcm+l.j’Dm,m+1.j’D (Dm.g.; J')*D (Dm-{-l,j’ )* ij’j"j

~ Cmjr :1+i.i’Dm+1v”‘-f'(ij ) Dm+1 8 (Dw’) Dm+1 W mJ j"J] {C61}
and
W = 4 01005 = p)0p = 8y = 8yl Pl o

Imr.";w

P I
* * T g% iy
X E hw!c'(bmrkﬂjﬂ'f‘bm'k"j”)i:g —l,k’cn_1.jcnan-],nJ n— 1J(Dj nel,j
!

m m' 5" "
s (DnJ) b =1, = Bnk'cnjcn-i-l J'Dl'l n-i-l_j' J (Dn-i-] J') D (Dn.{.i J)*
m’ , mj
X Fjjejr — Ba—ip€n-1,4C; Dnn—]_,r(D ..[_‘,) D a (D, J];)*D P — 10"

+ Bnk'cnjC:.H,anH.nj(D ) D,H.] J(D ) D,H-] By 1. (062)

JRiit



Multiguanta states derived from Davydov’'s {D;) ansatz 9141

Therefore we can write finally

T@) + T'@) + T"@) = =2njlk) =Y Onjonj 5Dy

mj'

Anj (k) == 2y, (kY + My (k) + 275 () (C63)

w"] mjf (k) = wnj mi* (k) + w;’z’] mj’ (k) + :;_; mj' (k)'

Now all terms in the equations of motion are defined. They are collected to a closed form
in appendix D.
Finally we would like to note that equation (C25) can also be obtained from

in N;
e+ N Z Kumj () Crmj (C64)

e =3,

by the normalization transformation
e .
Cnj = Njan; = Cpj = I\T_,-a,;f -+ 5 = Cnj- (CGS)
N .

Substitution of (C65) into (C64) leads to
in N,

ﬁN
/Ry + 5~z 2 VN + NS Kumgary (C66)

where Kp»; contains now some additional normalization factors, which in the end are equal
to unity, and finally to

iRny = N; Y Kumjlimj (C6T)
m

which is identical to (C25).

Appendix D. Closed form of the equations of motion

One can split the equations of motion for the electrons (C21) and (C41), into terms which
contain time derivatives of the unknown functions and those which do not. For this purpose
we define :

Onmj = ~Hyi8pm = Gajmatt (1 — 8an) — Go_y 8mna1 (1 — 8p1) (D1}

Oy . % *'
Li=-s=ro D A(Hyy = By YoniChn + (G = Gndempr s (1 = 8p)
J S om

+ (Gm—i S G:zw-l,j)cm—l i m;'(l ml)} (D'Z)
where we have the matrix

Hr:j =D+ E; + Fnj. (D3)
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Matrix D and vector E are defined in equation (C14), matrix G in equation (C18%) and
(C19) and F in equation (C17) and (C184). Thus our equations of motion are

s ih in Ot Cit
ihCnj + E(Aj-l-an-l-Cj)cnj El O—:_l—_-;—J

X Y (Ay+ By + c,-f — Aj — Buj — Ci)emjChyy
m

= z an.mjl (,'mjr (D4)
mi )

where A is defined in equation (C8), B in eguation (C11), C in eguation (C13), and
an,mj’ = Onmjajj‘ + I_‘ij'anm- (D5)
One can easily verify that parts of the second term in equation (D4} can be rewritten as
cﬂJ (B”J +C; ) = lhcﬂj Z Z[Aﬂl m.l"(k)bm-k] u; my(k)bmkj’] (Dé)
mj’
where

Anjmp (k) = %[[ kit Z(OJ" — &y MCmj] bm'k;"]snm‘su

m' j”

+ lij'lz[(oj’ JJ')(bnkj + b

+ Z(oj” - ajj”)(oj’ - aj"j - aj’j”)lc"fjﬂlzb:;lkjﬂ] }. (D7)

mrju

Although, as shown below for the A;, the parts of the third term in equation (D4) containing
the C; vanish, we keep them here, because it is easy to rewrite that term with the above-
defined A(k), which in the course of a calculation has to be computed anyway. Thus with
the help of this matrix we obtain from the third term in equation (D4)

iﬁ Oj"c 0
? Z; o; +"JJ KB Tt < ") - (B"‘J +Cj )]cm'J !
. QuCpin .
= - lh Z Z Z J7ny m J,.,.Cmrj'[ [Am";,mj (k) Am"j",mj" (k)]bmk]'
mj’ m " 05~ ojn

+ [Am’j mJ"(k) m'J" mj‘(k)]bka } (DSJ

Together with
opCpj "
Z:chch, = Spy =8y = — Z Of+ ;, (Ay = ADY  empcly =0 (D9a)
m

we obtain the equations

1171
lhcn_,r + 3 A_;an +ir Z Z[Un i (k)bmk_r + Vn; mj (k)bmk_,r] = E an,mj'cmj’ (.ng)
mj’

mj
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where we have the definitions

Unjmj (k) = CnjAnjmy (k) + Z
m it o +o it

2} j” Cn 1

~Co € o[ A oy () = At j,mpr ()]

OmCnin
i}

Gt Ao 0) = A i
J

Vr:j.mj’(k) cﬂjAnj m] (k) - Z

‘ " 0_‘!
Further we obtain from
-EAjCﬂj = EC,U' Z(oji - ajjJ)(C:zijmjf - ij!C:gj;)
the equation
o if . ) "
iheq; + 5;4._,‘6‘,,}' =ik Z[Pnj.mj’cmj’ + Qﬂj.mj’cmj’]
mj’

with the definitions
_ 1 *
Pujmjt = umdjje + 56nj (05 — 8550 )Cpjo
— 1
Onjmp = —3nj(0y — djp)Yemy.

With this we can write the equations of motion in the simple form

9143

o10)

(D11)

(D12)

(D13)

in Z {Pnj,mj'émj' + an.mj nj + Z[Un; 1t j (k)bmkj + Vn i (k) micj']] = Z: an.mj’cmj’
mj' i

or if we consider {nj} as one combined index we obtain
if [Pc': +QE + ) Ukbe + V(k)ia;';)] =
k

The equations of motion for the & values are given in matrix form by

D14)

(D15)

Y [AnjmjrEemyr + Anjmr (Vs Crjon B bmig] = Y e kYot 4 Joj (B)

! mj’

where the matrices on the left-hand side are defined as

Anj.mj’ (k) —] %ajc:j { [bnkj + Z(Oj!r - 3”«) lcm'j”lzbm’kj"] Snm(?u-;

mfjf!

+ enjloy — 85 )Chy mkf'}

Anj,mj' (k) = lojcnj{[ nkj -+ Z(OJ; —8; j"}|Cn;’j"|2bm'kj”i|5nmajj’

-+ C;j(Ojr - Sjj')cmj'bmkj'}

Orjmjr (k) = 0}l Pl8ambi + (07 — 8} cmy 7]

(D16)

(D17)
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as can be verified from equations (C43) and (C44).
On the right-hand side we have from equations {(C44) and (C47) first of all

2 2
an,mj’(k) = Hmkojlcﬂjl [anmajj’ —+ (01'" ""ajj')lcm_f’l 1
+ 0;85{€h ;6041 P, ;T nnt jOmn g
1. *
— zlehiCat1,iDnntt, i Tnnt1,j + €y i€ Dnmt i Unt,nj

+ C::jcn—l,an,n—l,j F:—l-ﬂi -+ C:+[,jcnan+l.nj F;,n-i-l,j]anm
+ f:jfn—J.an.n—l,jrn—l,ﬁjam.n—l} + wn_;‘,mj’(k) (D18)

where matrix I is defined in equation (C48), while w is defined in equations (C54), (C57),
{C62), and (C63). Finally we have

Juj k) = heogojcy; (BukCnt1.; Dt j Poj + BactkCn1,; Dan—1,j Pr1,5)

+ Z(o_; - ajj')oj ilcn_;i ﬁwkamk{cmfcm-f-l 7L m me1 J'ijr(Dm+[ _,) -ij i

mj

+ CmJ'Cm+[ _,'Dm—[—l mj’ (Dnj b Dm+l J K g _,] + Anj (K) (D19)
where matrix X is defined in equations {(C53), (C57), (C61), and (C63). Using again {nj}
as one index and together with equation (D15) we have the following system of equations

for the determination of the time derivatives of ¢ and the b; from their actual values at a
given time:

ih[Pé + Qe+ UMb+ Yy V(k)b;} =We (D20a)
& k

RIAUK)E+ AK)E + O] = Q)b + T &). (D20b)

Appendix E. The Lagrangian and the time-dependent variational principle

In the Lagrangian method we have the variational principle

[ewme[ ) bacome

The part containing the time derivatives leads to

[ Qo)+ g}~ GGoob)-(Gipe)) o o

In the parts where the variation occurs under the time derivative, partial integration leads to

I} (ot} (b)) w7 (5 o) - [ o] 35)

(E3)
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Since at the end points of the integration interval we have 8¢ (f) = 8¢(f;) = 0, we have
together with an additional partial integration
9y i
) ds
)

7 (3= Gele)) o= [ (o
=i [ (&;o!—)dt (olsg): f”( aiasa)dr |
S ey

Thus we have shown that

153 . )51 m a(—‘— - 153 n
af {olLlp)dr = af ((;0 T H’qo) dt = 3f (ga]ih% - H‘ga) dt (ES)
n h L]
5

where
_ [ 19 3¢
ar ¢>_(¢ 8:) (Bt ¢

Therefore the selution of our Euler—Lagrange equations '

43L 8L _ 43L 9L _, ED
dedpl  dlel dr 8lg) 8l
is equivalent with the application of the time-dependent variational principle. This is meant
when we speak about ‘comrect’ equations of motion in contrast to those derived with the
method of Davydov who used the Hamiltonian principle but not the correct canonical
conjugate variables [29]. The Euler—Lagrange equations finally follow d:rcctly from the
variational principle:

n oL 5L aL oL
af Lig, o*, ¢, ¢* dt=f [—5 + 8¢ S¢* + ,5'*]:11::0 8
| (@, 0%, ¢, 6%) 13 2500 T 3,00t 5500 {E8)

a‘-}

). (E6)

by partial integration and using S (1) = Se(t:) = S¢* () = dp™(rz) = O

2aL aL 8L 2 dar aL 2 d 3L
dt = 5‘2-[6———d — fs*— dt
[z [ } 50 ol @ + —=dp*|? A 5 Py

39 W ard 39"

Ar 4oL .d oL
_fn l:Bthacp-I-S e ]dt. (E9)

Therefore our variational principle

72 2 ddL BL
5| Lip, ¢ ¢ ¢* dt=f ) [——-———.-i——]dt
/:. (p, ¢*, @, ¢%) A ey %9

‘2 d 3L arL
+f 5*[—— — ]dr:O E10
L% Tareer g (E10)
can be fulfilled for arbitraty variations only if the Buler~Langrange equations
daL 3L d 8L oL
—— = — - = (E11)
dtde  dp dr dg=  dg*

are fulfilled.
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Appendix F. Adiabatic dynamics with classical lattice

In this model which is usually applied in simulations of the dynamics of polyacetylene
the ionic CH™ cores are assumed to move as classical particles in a potential created by
the m-electrons, which are treated within a Hickel-type model, and by the o-electrons.
However, the o-electron potential and the o—r interactions are assumed to be included in
the lattice potential. Also the dynamics of the m-electrons are not computed explicitly, but
the electrons are assumed to follow the ionic cores immediately. Thus we have

K
V=E +7 ;(u,, — Upp1)? — A — un). (F1)

The coordinates u,, are usually transformed to the so-called staggered coordinates v, =
(—=1)*+y,, leading to the form

K
V=E+ 0l Zn:(v'fn + Yari) — AQ + (1Y) F2)

For each geometry {1} the energy E, is computed by diagonalization of the Hiicke] matrix
Hyp = [8° = (= 1™ (¥ + ¥t 1)018m 01 {1 — )

+ (8% + (D" (P + Y1) 1 (1 — 1) (F3)
i.e. the eigenvalue problem

He = g0 (F4)

has to be solved. The m-electton energy can now be obtained by summation of the
eigenenergies multiplied with the occupation numbers of the orhitals:

E, = Z Oi&i. (F5)

It can be shown that the derivatives of E, with respect to the displacements can be obtained
analytically by [13]

3E.
ag, = 22D Pansa (1= ) = Ppa (1= &) (F6)
where the density matrix is given as usual by
P = Zoicﬂicmi- (F7D
i

Note that the MO coefficients are real numbers in this case. The constants K and A are
determined by the requirement that a geometry

¥ =+ (-1)"(r—La F8)

corresponds to a minimum of the total potential for = ug and @ = 0. In this way a regular
geometry with dimerization uy and chain length (N - 1)ap is the equilibrium geometry. Thus
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one performs a Hiickel calculation on this equilibrivm geometry, computes the derivatives
of E, with respect to the v, and from this

3EBx _ ~— OE; 9Ex . 1wy 1 9Ex
du _; EI da ""Z,,:( 2 1)3%' e

From this the constants can be computed by [26]

[ 3Ex  _BWN)3E, _y L ew
k= |5 v gt ] [ o o -v- 525

1 8E 10E, 1 3E B (F10)
A= N 1% Q(N)(zau N—laa)/[N(N 2]

OW) = 3(1+ (-DY).

Newton's equations of motion are then

_ dv
dr

dx, av aE,
M= — K[ + Yner) (A — 8a0) (F11)

Xn

&t~ o v
+ (Ib‘rz—l +";b'rz)(1 _=5n1)] + A(ﬁnl + (_1)N5nN)

or in the physical displacement coordinates

Prn= Mu,

s F12)
Fu= pn = =52 = K — tns1)(1 = v} = (not = 4a)(1 = 8,1)] + AGu1 — ).

/]

Temperature effects can be included in our calculations as described in the main text via
the initial conditions; however, one can also add random forces R, and a friction term to
equation (F12), leading to the Langevin equations

Prn = Fp(0) + Ry (2) — I'pa. (F13)

" is the time constant of the heat bath. The correlation function for the random forces is
(assuming for the moment a continuum limit);

{R(x.t)R(0, 0}y = 2Mkg TTapd(x)8(t) (F14)

where T is the temperature and gp the lattice constant. The random forces are assnmed to
follow a normal distribution with standard deviation /o :

w(Ry} = (1/+/2mc) exp[—R./(20)] (F15)

where in the normalization factor for ¢ just its value in the actually used units has to be
inserted. In actual computations we usually [12] calculate a series of L = 12 uniformly
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distributed random numbers X, {(#)(0 € X,,;(t) < 1) for each site 7 in each time step ¢ and
generate the forces as

L
Ry(t) = /o ) [ Xnelt) — 31. (F16)

§=1

Thus the variance of [X,,(s) —0.5] is -12- and the standard deviation of R,(t) is /o with the
mean value zero as required. The interval for the forces is [R,(t)[ < 6./o. Thus we obtain
an approximate Gaussian distribution which would be exact if L would go to infinity. To get
a feeling for to what extent the Gaussian distribution is realized, we computed random forces
for a value of ¢ as obtained for a chain of 100 units, I' = 0.0413 ps~! and T = 310 K,
M = 114my (myp is the proton mass), X = 13 N m™, and L = 12. We computed 10°
values and divided the total range of £6./c into 200 equidistant intervals, Then we counted
the number of R values occurring in each of the intervals. These numbers were normalized
such that for the interval around zero the value (2wo) !/ is obtained. In figure F1 this
histogram is plotted together with the exact Gaussian distribution function and we see that
the agreement is satisfactory.

w{R)
.75

=70

.65,

.EBD

T

-1

.50

T

43
40k
.35
U )

2%

=
T

)
o
S RAEE NN N SN L EREREErFREC SRR

k et i § ] 11
2 -1.5 -1 -% & .5 1 L5 -2
Force & {ov/R}

Figure F1. Plot of the numerically determined distribution of random forces w(R,) as function
of site n (vertical lines, see text for details) together with the exact Gaussian distribution function.

The effect of the two additional terms in the equations of motion is to drive the system
into thermal equilibrium with the time constant . Requiring the random forces to be
constant within a time step T and in a lattice period ap we cobtain by averaging over T and
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the lattice constant ag

f2 agfl
o= [ d f £35(1{*(;; R(O, 0))

72 T Jego/2 o

r 2 /2 T
=2MkBT—f 8(t) dtf §(xydx = 2MkgT—. (F171)
T J-zj2 —ayf2 T

For the time constant we use the lower non-zero phonon frequency of the lattice:

Winin
I =y = Yo - (F18)
Since the time constant is an additional parameter which can be chosen more or less
arbitrarily, we recommend using the method of thermal lattice population as described
in the main text. Further, the latter method can be used in all three methods applied, while
the Langevin model is valid only for classical lattices. However, to study its validity, we
applied it in this work.

Appendix G. Numerical procedure for the solution of the equations of motion for the
l@z) ansatzy ’

The equations of motion for the electronic system in the [®,} approximation are

ihénj = [8 — a(gn — gni1)Cnyr,; + [B — a(gn-1 = g}lcn—1,; G1)

where one has to take care for the boundary conditions in the cases n = 1 and » = N. For
the numerical solution of these equations neither a one-step nor a Runge~Kutta method was
sufficient to obtain a constant overlap matrix and energy with a reasonably large time-step
size. Thus at a given time # we solved the eigenvalue problem of the right-hand side of
equaiton {G1):

HV=Ve = &= £xdnm ViV=Vvt=1 (G2)
Hyp(20) = {f—celgn (10} —Gn+1(0)]}om 41 (1 =8 )+{ B —tlgn—1 (t0) —gn (G0} 1}8m.n—1 (1 —5n1).
(G3)

Then the equations of motion are written in matrix form
ife, (1) = Htp)e; (2). G4)

Multiplication from the left with V*, insertion of the unity matrix in the form VV*’ and

transformation to d;(z) = V*+¢;(r) yields the decoupled equations of motion
BV é (1) = VIH()VV ¢ (1) = iid; (1) = ed;(2)
. (G5)
= (dy; (t) = endy; (2).

Assuming H to be constant during a reasonably small time step t, and thus also its
eigenvectors and eigenvalues, the equations can be integrated:

dyi(to + T) = dy;(tg)ye~ /MW" (G6)
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which yields the eigenvectors at #p - © after back transformation by multiplification with ¥V
from the left

Crilto+ 1) = Z Vimtyy (o)™ 0/MEnT = Z Vi Z Vimey; (o)™ /Rent (G7)
m " k
Note that V is real. The lattice variables are computed as usual:

Pulto + T) = pu(to) + Fu(i0)T gn(to =+ ) = gnlto) + pulto + t)% (G8)

where one has to take care again for the boundary conditions in cases n = 1 and N. The
forces are given by

Fo(to) = K[gn+1(t0) — 2, (t0) + gu—1 (f0}] + 2 Re[ P, 1 (f0) — Pun—1(%)]. (G9)
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