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I. Equations of motion for the SuSchrieffer-Heeger 
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Eger landmse  3, w-91058 Erlangen, Germany 

Received 26 April 1994, in final form 1 August 1994 

Abstract. We present equations of motion for the Su-Schrieffer-Heeger (SSH) Hamiltonian 
derived with the help of ansa& s t a m  similar to Davydov’s so-called IDI) state for soliton 
dynamics in proteins. Such an MSUU state allows for quantum effects in the lanice and goes 
beyond previous calculations which mostly apply adiabatic models. In the most general case, 
called I%). which is treated here in detail, we assume that the coherent-state amplitudes for 
the lattice depend on the site and the molecular orbital of the electrons. The equations of 
motion are derived from the Lagrangian of the system, a method which is equivalent to the 
timedependent variational principle. In the resulting equations we find that, although the SSH 
Hamiltonian is a one-particle operator, indirect electron-electmn interactions are present in the 
system which originate from the electron-phonon interactions. Inclusion of direct electron- 
electron interactions, as described in  section 8, will give insight into the interplay between 
electron4ectron and electron-phonon interactions which can lead effectively to an attractive 
force between the electrons in system other than polyacetylene. where bipolamns are known to 
be unstable. Further with our time-dependent wavefunction also vibrational details of absorption 
spectra can be computed. From the equations of motion several approximations can be derived. 
In a furlher approximation, 102). the dependence of the coherent-state amplitudes on the lattice 
site is neglected. This IQ,) M S ~ I Z  state consists of B simple product of the electronic and the 
lattice wavefunctions; however, the electrons are not constrained to follow the lattice dynamics 
instantaneously as in the adiabatic m e .  Finally the classical adiabatic case is discussed on which 
soliton-dynamics simulations are usually based. Further we discuss how to include temperature 
effects in our model. Applications to soliton dynamics are discussed for the example of the 102) 
model with emphasis on the dependence of the results on soliton width and temperature. We 
found lhat in contrast to mults  reported in the literamre, where a similar M S ~ U  is used, but only 
one electron is treated explicitly, the solitons remain stable also for small soliton widths. This 
indicates that the interactions of the electrons not occupying the soliton level with the lattice 
have a stabilizing effect on the soliton. Funher our results indicate that the temperature model 
using random farces and dissipation t e m  to introduce temperam effects has to be applied 
with extreme care in this case due to the strong electron-lattice interactions. 

1. Introduction 

Since the introduction of the soliton model and the SuSchrieffer-Heeger (SSH) Hamiltonian 
[ 11 (for a recent comprehensive review see the article of Heeger, Kivelson, Schrieffer, and 
Su [I]) for the explanation of various properties of trans-polyacetylene @-PA), it has been 
shown that it is necessary to go beyond the simple Huckel-type SSH model. A Huckel-type 
model e.g. cannot explain the spin densities in t-PA measured with the electron-nuclear 
double-resonance (ENDOR) method [2]. Also for the explanation of I3c-NMR line shapes the 
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inclusion of explicit electron-electron interactions in the model turned out to be essential 
[3]. The observed photoinduced low-energy absorption was assigned to excitations from 
photogenerated charged soliton pairs which would absorb mid-gap in the SSH model [4]. The 
origin of the photoinduced high-energy absorption, however, was a matter of considerable 
debate. Bishop et al [5] assign it to a breather excitation left between a separating pair of 
charged solitons. Wang and Martino [6] found an oscillating charged soliton-antisoliton pair 
with a breather vibration of the chain between them to be responsible for this absorption, 
while Su [7] and Kivelson and Wu [8] suggest a neutral (triplet) soliton pair as its origin. 
Therefore it seems to be established that the inclusion of electron-electron interactions at 
least on the Pariser-Parr-Pople (PPP) level in mean-field form is necessary to obtain a 
reasonable model of the dynamics of I-PA chains. Nowadays (see discussion and references 
in [ZO]) it is established that neutral solitons are indeed responsible for the high-energy 
absorption. 

The computation of the gradient of the electronic energy with respect to the geometrical 
degrees of freedom can be done in a timeconsuming way by a small shift of the coordinate 
of each CH unit [9-121; however, the use of exact analytical gradients is more efficient 
[ 131. In (-PA the soliton movement is restricted to roughly 50 CH units [Z] probably due 
to impurities, crosslinks, and &-PA segments [14] or interchain interactions. Thus an open 
chain seems to be a more realistic model than a cyclic one. Wang and Martino [6] used an 
extended Hubbard model with first-neighbour electron-electron interactions. This seems to 
be consistent with the first-neighbour truncation of the resonance integrals. However, the 
resonance integrals decay very rapidly after the first-neighbour term, while the two-electron 
integrals do not [E]. In our simulations using the full PPP Hamiltonian and the unrestricted 
HameeFock (UHF) method we found that electron-electron interactions have a considerable 
influence on soliton properties 1151. Its kinetic mass e.g. is roughly doubled compared to 
the SSH model [I] and its half width reduced in agreement with MNDO (modified-neglect- 
of-differential-overlap) calculations 1161. The MNW method treats all valence electrons 
explicitly and not only the z electrons as PPP does. However, in [I61 restricted-open-shell 
HF (ROHF) was applied instead of a different-orbitals-for-different-spins (DODS) method like 
UHF or annihilated UHF (AUHF), which are more appropriate for open-shell systems like 
neutral solitons in (CH)&+, (polymethine) chains. 

In a previous work we have studied the influence of isoelectronic substitutions of CH 
by N, NH+, and O+ within the SSH framework [lo]. We found that a soliton is able to pass 
a nitrogen atom but not the oxygen. In another recent paper [I71 site and bond impurities 
have been studied applying also the SSH theory. It was found by Phillpot er al [I71 that 
the soliton moves unperturbed in a rather broad range of the impurity strength. Since the 
soliton properties change considerably upon inclusion of electron-electron interactions [U] 
it is important to study the effects of site and bond impurities also within the PPP model. 
This was done in our previous work [IS] and we found that in the PPP model free soliton 
movement is possible within a much smaller range around the parameter values appropriate 
for carbon than in SSH models [IO, 171. Similar conclusions were obtained from a model 
where the spin contaminations inherent in the UHF ansafz are avoided [19]. In a more recent 
work we attempted to reparametrize the PPP Hamiltonian for polyenes and found that the 
electron-phonon interaction parametir has to be much smaller than in the SSH Hamiltonian 
[ZO]. The results found from this study confirmed the assignment of the photoinduced low- 
energy absorption to charged solitons and of the high-energy absorption to neutral solitons. 

Since in all our studies using the PPP Hamiltonian we found a rather small soliton half 
width of about two to three lattice sites the question of the influence of quantum effects 
on soliton dynamics in the lattice arises (see also the review by Heeger e t  a1 [I]). In early 
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work Nakahara and Maki [21] discussed quantum effects on the solitons on the basis of the 
continuum version of the SSH Hamiltonian. The discrete SSH Hamiltonian was applied by 
Rukh er al [22] who used an m a f z  which is a product of one-electron states and displaced 
oscillator states for the lattice. Thus their U n S U k  is similar to the semiclassical 14) ansat.? 
state introduced by Davydov [23] for the treatment of protein solitons, where coupled high- 
frequency oscillators interact with acoustical phonons in the lattice. Rukh et a1 [22] found 
that quantum effects destroy the solitons when their size is small. Since in the PPP case the 
soliton size is rather small, one h& to investigate quantum effects further. Going beyond 
the am& of Rukh et al we use an m a k  derived from Davydov’s more sophisticated 
ID,) state [24] which is a better approximation to the true quantum states of the Davydov 
Hamiltonian. We call this general U n S a k  I@,,). However, in our case the state contains 
more than one quantum (electron) in contrast to Davydov’s considerations. In this paper 
we concentrate on the derivation of the equations of motion from this anzatz for the SSH 
Hamiltonian [Z], as well as on some approximations to it, together with possibilities for 
the consideration of temperature effects. These approximations include an intermediate one 
where the coherent-state amplitudes for the lattice phonons depend only on the lattice site 
and the wavenumber of the phonons and a most simple one where electronic and lattice 
wavefunctions are separated, IQ2) ,  corresponding to Davydov’s ID2) ansak in proteins. In 
the second paper (11) of this series we derive the same hierarchy of approximate equations 
for multiquanta states in the Davydov model. 

On the numerical side we restrict ourselves to applications of the equations of motion 
for the I02)-ansatz state, where the product of one-electron states is simply multiplied by a 
coherent-state for the lattice phonons. Howecer, the electrons are not constrained to follow 
the lattice dynamics instantaneously, as is the case in the completely adiabatic model. This 
ansnfz state is of interest, because Rukh ef ul [22] use~a similar model containing a product 
of electronic states with coherent phonon states, but treat only the electron occupying the 
soliton level explicitly. They found that in this case the soliton is unstable if its’ width is 
as small as approximately one lattice site, as mentioned above. Since small soliton sizes 
can be easily obtained in the SSH Hamiltonian by using a larger dimerization than the 
experimental one we restrict ourselves to the SSH model in this work and discuss soliton 
dynamics within our amak state as function of soliton width and temperature. In these 
calculations temperature is included via random-forces and dissipation terms. The results 
are compared to those obtained from the completely adiabatic model. 

Applications of the equations of motion folIowing from the IQ+state ansatz which 
allows for quantum effects in the lattice will be the subject of a forthcoming paper. Also 
temperature effects will be studied in detail numerically there. After computation of a 
reliable wavefunction, we can also calculate details of the absorption spectrum of the 
system, if we deal with an excited state. With the ground-state wavefunction, @(t = 0), 
and the excited state wavefunction Q(t) obtained by our method, one can easily compute 
numerically the autocorrelation function 

. 

which contains non-trivial overlap factors between coherent-states belonging to the ground 
state and to the excited state where the latter coherent-states are time dependent. From this 
by Fourier transformation the spectrum 

+m 
U @ )  - /” eiE‘S(t)dt 

J-CO 
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can be obtained, as is done in conventional wave-packet calculations (see e.g. [37]). There 
electronic and nuclear motions are separated in contrast to our ansatz (for times smaller 
than zero, one sets the excited-state wavefunction equal to zero), which will be extended 
in the future also to PPP and to self-interaction-corrected-density-functional (see e.g. [38]) 
models. Thus one hopes that with well parametrized semiempirical models, like SSH or 
PPP, or with the density-functional theory one could obtain more reliable results than with 
conventional wave-packet dynamical models. 

2. The model 

2.1. The Su-Schrieffer-Heeger Hamiltonian 

The sSH Hamiltonian [I] is given by 

+ iK(& - 8,+1)' - A ( i ,  - in+,) . (3) 1 
In (3) Bo = -2.5 eV is the transfer or resonance integral between two neighbouring CH 
groups; or = 4.1 eV A-' is the electron-phonon coupling constant The values of these 
constants [ I ]  are determined such that an SSH (Hiickel) calculation on an infinite, ordered 
and ideally dimerized chain results in a x-band width of 10 eV and a fundamental gap of 
1.4 eV. M = 13m, (in ordered chains) is the mass of a CH unit, K is the spring constant 
due to the U electrons between two neighbouring units. K and the linear potential constant 
A are determined such that the ideally dimerized chain shown in figure 1 represents the 
equilibrium geometry of the chain [26]. 

Fiwre 1. 

In figure 1, the U, are the projections of the displacements of the CH units from the 
equidistant chain onto the polymer axis, q is the lattice constant of the equidistant chain 
and yo is the distance of the CH units from the chain axis, which is kept constant in the SSH 
model, in is the operator of the displacements of the units parallel to the chain axis from 
their positions in the equidistant chain, and F,, the corresponding momentum operator. The 
operator 2To(&g) creates (annihilates) an electron with spin orientation U at unit n. The 
Fermi commutation relations of these operators are obtained from 

8+10)=11) C ' I l ) = O  8[0)=0 ? l l ) = l O )  (4) 
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as 

- -  {A k} se 'ifi + k.4 (C",, &,} = 80"&o, {;"c, ;E!,+} = {?TV, ;,&,I = 0. (5) 

In I-PA as can be seen from figure 1 two energetically degenerate bond alternation phases 
exist. In chains with an odd number of carbons we have an unpaired electron, which 
occupies a non-bonding level at mid-gap, the soliton level. The soliton is a domain wall 
where the system switches from one bond alternation phase to the other. Usually the 
system is treated adiabatically [I], i.e. the units are considered as classical particles moving 
in the potential created by the n electrons and in the harmonic potential due to the U 

electrons. In this case, using the SSH Hamiltonian, one observes a stable and mobile soliton. 
However, recent calculations have shown that for a small soliton width quantum effects in 
the lattice might destroy the solitons [22]. In the SSH case the soliton width is quite large 
(14 lattice units); however, if electron-electron interactions are included the soliton width 
is drastically reduced [15,18-201, thus also invalidating considerations based on continuum 
approximations [21]. Since in the SSH case the soliton width can be chosen freely by the 
value of the equilibrium dimerization uo, this model seems to be a good starting point to 
study quantum effects in the lattice in more detail. It seems to be reasonable to start with 
an m a t z  state similar to Davydov's IDI) state for this purpose. The basic differences to 
the Davydov model are that the electron-phonon coupling appears in the site-off-diagonal 
terms in contrast to the Davydov model where the exciton-phonon coupling appears in the 
site-diagonal terms, and further, that instead of bosons ( C O  oscillators) we have to deal 
with fermions (electrons). 

The SSH Hamiltonian can be rewritten into a more familiar form by introduction of the 
usual creation and annihilation operators for the lattice phonons which are of the same form 
BS in the case of the Davydov Hamiltonian and obey Bose commutation relations: 

^ ^  [i, 21 se Ak - k i  [ b k ,  b;] = SKK, [&, &7] = [SA, &] = 0. (6) 

For this purpose we rewrite first the Hamiltonian to get rid of the linear terms which leads 
to 

(7) 

The & are displacement operators relative to the minimum geometry of the lattice potential 
in (3) and are defined in appendix A. The constant C and the renormalized hopping integral 
are also given in appendix A. The one-electron SSH Hamiltonian is then given as 

Separation of the constant term leads to 



where E is given by 

o& being the eigenfrequencies and v k  the coefficient vector of the normal mode k of the 
decoupled (a,, = 0) lattice, i.e. they are the solutions of the eigenvalue problem 

1 
-K& = 03% (1 la)  M 

following from 

and thus 

K n m  = ~ [ 2 ( 1  - +&I - + & N ) L  - h.n-1(1 -SDI) - L , ~ + I ( I  - L~)I .  (114 

The translational mode (o = 0) has to be excluded from the summations. 

2.2. The amatz state 

As ansatz state one could think of using a Slater determinant (in the Huckel-type SSH case a 
simple product of one-electron states would be also sufficient) built from the (orthonormal), 
molecular orbitals 
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where IO), denotes the phonon vacuum [27]. However, when forming the Slater determinant 
or a product state from these MOS, we would obtain products of coherent-states from different 
sites which do not form a pure coherent-state again. Therefore we have to introduce another 
form of the ansafz . 

To this end we first of all introduce creation (annihilation) operators G.(&j) which 
create (annihilate) an electron at site n in the spin orbital j. Our full Hamiltonian for U 
electrons reads then as 

Now each of our w electrons (j) occupies an atomic orbital at site nj. To denote this 
situation we introduce a row vector n = (111, nz, . . . , n j ,  . . . , ny). Thus we can write the 
electronic part of the wavefunction of this state as a Slater determinant 

where in the antisymmetrizer P runs through alI possible permutations of the electrons. 
Here we have to note that in our case of a oneparticle Hamiltonian the construction of 
a Slater determinant is not necessary, because a simple product of the one-electron states 
leads to the same results. 

The electron distribution given in equation (15) causes a polarization of the lattice due 
to the electron-phonon interaction in the Hamiltonian, leading to a state 

IfW = I&(n))fimIO)p. (16) 
If we assume that the lattice polarizations due to the individual electrons can be 
superimposed to give the total state of the lattice, we can write the lattice operator in 
equation (16) as a coherent-state: 

(17) fin = e-(1/2) Xh I E;=, bnjk;( t ) IzeEJ~L bn,tj(Ol@ 

where the coherent-state amplitudes bnkj are functions of time and have to be determined. 
Then the total wavefunction can be written as a superposition of all states If@)): 

10) = xcmlf(n)). (18) 
n 

Since we have a one-particle Hamiltonian, the Nu coefficients, where w denotes the number 
of electrons, decouple to products of the expansion coefficients of one-particle states, the 
spin orbitals. Introduction of this decoupling leads to our final ansafz state 

where we have already left out the antisymmetrizer, since it is not necessary in a one- 
particle case. In paper II of this series we will deal with bosons and we can use also a 
simple product for distinguishable particles and a permanant for indistinguishable ones. A 
permanant is constructed in the same way as a Slater determinant, except that each term has a 
positive sign, i.e. instead of the antisymmetrizer one has to use the same sum of permutation 
operators but without the factor (-1)'. However, also for bosons both cases give the same 
results in a one-particle model. In the next sections we will derive the equations of motion 
for the parameter sets (cnj( t ) ]  and (b ,k j ( t ) ]  from this nnsak state which will be denoted 
by IQo) in what follows. 
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3. The Lagrangian for the I @o) ansatz 

For a general Hermitian Hamiltonian fi = f?+ with solution lp) the Lagrangian has to be 
consmcted such that the Euler-Lagrange equations give the time-dependent Schrodinger 
equation and its Hermitian conjugate: 

The two conditions together are only fulfilled if the Lagrangian is written as 

Thus we have to form the corresponding expectation values with our unsatz state and 
Hamiltonian (see e.g. [28]). The form of the different terms occurring in t can be most 
easily seen when they are explicitly constructed for a simple three-particle, three-site system. 
This is done in appendix B. The final form of the Lagrangian for spin orbitals and a chain 
of N sites and U electrons (which occupy p spatial orbitals) is then in orbital form 

p is the number of occupied (singly or doubly) spatial orbitals and the oj are the occupation 
numbers. The X j  and Xjjr  are products of molecular-orbital norms and are defined in 
appendix B. The Hamiltonian function X is (see appendix B) 
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Thederivation of H is again given in appendix B. The D and P values derive from 
factorized overlap integrals between coherent phonon states (see also appendix B). The D 
values are given in (S25)-(B29) and the P values are 

To rewrite the Hamiltonian function from the spin-orbital basis (U singly occupied spin 
orbitals) to the orbital basis (p  singly or doubly occupied spatial orbitals) the following 
replacements 

had to be performed, where the Y values stand for any occurring arguments in the sums 
and products. With these equations the Lagrangian for our IQo} ansatz state is completely 
defined and we can go forward to the derivation of the equations of motion of our time- 
dependent parameters. 

4. Equations of motion for the I@o) ansalz 

From the above-derived Lagrangian in orbital form 

L = L ( [ C n j ( ( f ) ) ,  I b n k j ( t ) l )  (26) 

the equations of motion can be obtained with the Euler-Lagrange equations of the second 
kind 

where n runs over the N sites of the chain, j over the p (doubly or singly) occupied spatial 
orbitals and k over the ( N  - 1) (non-translational) normal modes of the phonon system. 
This procedure is equivalent to the time-dependent variational principle (see appendix E) 
or Heisenberg's operator method, after averaging the equations of motion for the operators 
with IQo). The derivation of the equations is given in detail in appendix C. As shown 
there, we have to add Lagrange multipliers to the above Lagrangian in order to conserve 
the overlap of the orbitals, leading to the equations 
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As shown in detail in appendix D, the equations of motion can be cast into the simple form 

iftC P n j , m j ’ ~ m j ’  + Qmj.mjr*& f C [ u n j . m j ’ ( k ) b m k j ,  + V n j , m j ’ ( k ) 6 : k j , ]  
k 

(29) 

mj’ I 

Considering { n j ]  as one combined index we obtain the following system of equations for 
the determination of the time derivatives of c and the bk from their actual values at a given 
time: 

ifi PC + QC” + CU(k)bk + V(k)G = WC ( 3 1 4  

O l b )  

The matrices occurring in (29)-(31) depend only on the vectors ~ ( t )  and bk(t) and on 
constants. They are defined in detail in appendix D. From equation (31b) we obtain 

6; = L’(k) + M’(k)C* + N*(k)C 

[ t k 1 
iii[A(k)c+ A(k)C* + @(k)bk] = n ( k ) b k  f J(k) .  

& = L(k) + M ( k ) C  + N(k)C’ (32) 

with 

M(k) = -CT’(k)A(k) N(k) = -W1(k)A(k). 

Thus each of the ( N  - 1) k values (translation excluded) requires inversion of an ( N p  x Np) 
matrix O(k), where again N is the number of sites and I.L the number of occupied 
orbitals. From unpublished, preliminary numerical experience with an approximation to 
these equations, where the D z ’ ,  P n j ,  and Pnjj, are assumed to be constant in time and 
equal to unity, we conclude that these inversions should not cause any numerical problems. 
The same holds for the further inversion required later on. Substitution of equation (32) 
into equation (31a) yields 

From this we obtain 
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where 

This step requires inversion of the matrix p ,  which is of dimension (2Nw x 2 N p ) .  Here we 
have an important point where correctness of programs can be checked. After computation 
of the time derivatives of the c values in a time step, one can calculate the time derivative 
of the overlap matrix from them, which has to be identically equal to zero by construction 
at any time step. 

For the numerical solution of our system of equations we have several options. One 
would be application of a simple one-step procedure. A way to improve this simple method 
is the use of a standard RungeKutta method, correct up to the fourth order in the time-step 
-t, or for further improvement, Milne's predictor-corrector scheme, which is correct up to 
0(r7) [36]. 

Finally, we want to point out that inspection of the equations of motion in appendix C 
shows that, in most of the terms occurring, we find products of the coefficients for different 
molecular orbitals, i.e. for different electrons. This implies that we have an effective 
electron-electron interaction present in the system, although the SSH Hamiltonian is a one- 
particle one for the electrons. This effective electron-electron interaction is not a 'true' 
direct interaction, such as the Coulomb interaction, but one which shows up because of the 
electron-phonon interactions. It might occur that in a Parker-Par-Pople model with the 
IQo) ansatz state this can lead naturally to effective attractions between electrons and thus 
to a counterpart of the 'negative-U' Hubbard Hamiltonians discussed in connection with 
high-T, superconductors. However, such a phenomenon cannot occur in t-PA because it 
would lead to the formation of bipolarons in  doubly charged chains, and it is known that in 
&PA bipolarons are unstable with respect to pairs of free, singly charged solitons and anti- 
solitons. However, when applied to semi-empuical models of copper oxide planes there 
might well occur an effective attraction between electrons or holes and thus pairing would 
show up. Likewise it is known that in many conducting polymers with non-degenerate 
ground states bipolarons function as spinless charge carriers in the conduction mechanism. 
Finally, not to forget the phase factors, note that our total wavefunction is given by 

e-(l/?)EtIC&l b,~,~;(O12eXklE~=L b . ; i i ( l ) l h ~ ~ o ) ~ ,  (37) 

These phase factors are important for the computation of autocorrelation functions. 
Due to the high degree of non-linearity in our equations it might be difficult to find 

numerical solutions of them. Thus it would be interesting to examine which approximations 
to the full IQo) theory can be derived. This is the topic of the next section. 

5. Approximations derived from 1%) 

As already mentioned above, due to the complexity and the large degree of non-linearity in 
the equations of motion for the [Q,o) amatz state, which make numerical simulations very 
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Figure 2. 

complicated and time consuming, one has to think about reasonable approximations to this 
ansatz state. There is a natural sequence of possible simplifications which is sketched in 
figure 2. The definitions of the quantities occurring are given below. In this section we 
want to discuss briefly these approximate equations of motion. 

5.1. The 10,) approxiination 

In this approximation we start from the 140) ansatz and neglect as a first step the orbital 
dependence of the coherent-state amplitudes, i.e. we set b,&) = bnK(t). leading to 

P ) p .  (38) e-0/2) 2 k  I & b t l ; ~ ( I ) l ' e ~ ~ [ &  h+(t)l@ 

Here the wk are the frequencies of the normal modes of the lattice (phonons), C is a 
constant energy (see above), the cn j ( t )  are molecular-orbital coefficients, where n denotes 
the site and j the (occupied) spin orbital, ?$ creates an electron at site n in spin orbital 
j >  v is the number of electrons in the system, IO), is the electron vacuum, b,&) is a 
coherent-state amplitude for site n in the normal mode k, b; creates a vibrational quantum 
(phonon) in the kth normal mode of the lattice, and IO), is the phonon vacuum. Physically, 
in this approximation we assume that the lattice polarization caused by the population of 
a given lattice site with electrons does not depend on the individual electron, but only 
on their total population at the site. This assumption seems to be quite reasonable and 
leads to a couple of significant simplifications. The Lagrangian and equations of motion 
for this ansatz state can be obtained from those discussed above just by neglecting *e 
orbital index j at the coherent-state amplitudes. With this approximation the computational 
work is reduced roughly by a factor of p, because we have to determine only N ( N  - 1) 
b parameters compared to p N ( N  - 1) before. In addition, the matrices O(k) which have 
to be inverted are now of size ( N  x N )  compared to ( p N  x p N )  before. However, the 
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high degree of non-linearity is still present in the 101) equations. The physically interesting 
indirect eleceon-electron interactions are also preserved in this approximation. Since the 
high degree of non-linearity is still there, we switch now to the next level of approximation, 
where also the site dependence of the b parameter is neglected. 

5.2. The [@2) and the classical approximation 

In this approximation the orbital and site dependences of the b parameters are neglected. 
Thus we set bnkj(t) = b&). From this assumption follows immediately that L&,j = I ,  
Om! Y = 1, Pn, = X j ,  and Pnjj, = X j 7 .  Physically in this approximation it is assumed that 
the total distribution of the electrons gives rise to the lattice distortion, no matter what orbital 
the individual eIectron occupies or what is the individual electron population at a site. This 
is a rather crude approximation and it is known from Davydov soliton theory as the ID2) 
approximation. As we will see, in this approximation the lattice is described semiclassically 
with one coherent state for each normal mode of the decoupled lattice. However, we discuss 
this approximation in more detail, because it is applied numerically later on. 

The ansaz state in the I@’) case reduces to a simple product of the electronic 
wavefunction with the lattice coherent states. Thus phase mixing between the electronic and 
the lattice wavefunctions and therefore quantum effects in the lattice are neglected. With 
the above simplifications, the ansatz can be written as 

\ - - I  

This implies that summations over orbitals as occumng in the Lagrangian can be reduced, 
e.g. 

j j ’  

Use of these results yields the Lagrangian 

with the Hamiltonian 
. -  



9102 W Fomer 

Finally we obtain for the lattice displacements and momenta 

P n ( t )  = m u n k I m [ b k ( t ) l .  
k 

Substitution of b;(t) = ub&) and renaming b;(t) as b k ( t )  again yields the final Lagrangian 
and ansa!z state. 

The Euler-Lagrange equations for the b; together with (v is again the number of 
electrons in the system, which is constant in time, see below) 

yield the equations of motion 

which can be shown to be equivalent to 

From this we see that the dynamics of the lattice (without electron-phonon coupling) follow 
from the classical equations of motion; however, in contrast to the adiabatic model the 
dynamics of the electrons a e  t&en explicitly into account. Further the p,, and q,, here have 
to be viewed as the expectation values of the operators. Note that equation (46) is identical 
to the lattice equations in the adiabatic case, since 

if E, and P are determined by diagonalization of the Hiickel matrix for geometry 
(4.1. However, in the I@2) case the MO coefficients are determined in a different way. 
Temperature effects can be included by introduction of random-forces and friction in the 
above equations in the same way as in the classical case (see appendix F): 

A = K(q,+l - 2qn + qn-d +2aRe[P,,.+1 - Pn,~-1I + MO - rp. (48) 

where the random-forces %(t)  are created in the same way as described in appendix F. For 
the orbitals we get from the Euler-Lagrange equations 

Now we perform a phase transformation 
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and arrive after renaming a,- as c,j again at the final equations of motion: 

3&j = (B + E.)~n+i.j + (B + EZ-ikn-i,, 

En xfi~%t(h k + b:) = - 4 %  -qn+d (51) 

= I B - o ~ ( ~ " - ~ . + I ) I ~ " + I , ~  +[B-e(qG-i -qn)l~a-i,j. 

A discussion of numerical results from this U l z S a k  are given in section 7. The explicit 
indirect electron-electron interaction terms are neglected in this approximation. 

However, in the above-derived approximation, the dynamics of the electrons are still 
considered explicitly, while in the usual SSH theory the electrons are assumed to follow the 
motion of the classicaly described lattice instantaneously. To arrive at this approximation, 
we have to assume that the electrons are in a stationary state for each lattice geomehy (at 
every instant of time), i.e. 

We obtain by substitution of cnj(r) = exp[-(i/fi)&jtldnj into equation (51) an eigenvalue 
problem 

Ejdnj=IB-a(qn -q~+i) ld~+i , j+IB--a(q~- i  -qn)l&-i,j * H d j = ~ j d j  

Substitution of this result into equation (46) yields finally 

which is identical to the equations derived in appendix F for the adiabatic approximation 
which is usually used in simulations of the dynamics of &PA. Therefore, through our series 
of approximations IQo) + I@,) + IQ%) + adiabatic model we could show up the links 
between our quantum-mechanical m a t z  state and the usually used SSH theory. 

5.3. The 143) and 1 4 4 )  approximation 
As we can see from figure 2, there is another series of approximations which finally also 
leads to the 1@2) state. However, from this series it can be expected that it would lead to 
equations which are numerically more tractable, by conserving the quantum nature of the 
lattice. In order to arrive at the first one of these approximations, 1Q3), we do not make 
assumptions on the b parameters directly, but on a quantity derived from them, namely 
their overlap, which contains a series of factors which are simple phase factors. These 
are factors of the type D$. what is the essence of this approximation is to assume the 
phases in these factors to vanish, i.e. we assume D Z  = 1. This is an approximation 
not on the level of the ansatz state, but on the level of the Lagrangian derived from this 
state. It has the further consequence that Pnj = X j  and Pnjy = Xjj,. Thus first of all, the 
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most complicated terms in the equations of motion which originate from derivatives of the 
P value with respect to the b parameters vanish and a further simplification stems from 
the fact that we have shown already that X = Xj = Xjy = 1. Due to the last fact, the 
high de,ve of non-linearity becomes reduced and it is quite probable that neglect of some 
phases should not he too crude an approximation. The 1@3) approximation changes the 
Lagrangian only in the electron-phonon pad of the Hamiltonian function. This implies that 
in the derivation of equalions of motion for the c values (see appendix C), ail terms remain, 
hut the D values have to be set equal to unity, as well as the P values remaining after 
differentiation. We note here that the high degree of non-linearity in the former equations is 
reduced considerably in this approximation, while the indirect electron-electron interactions 
and the quantum description of the lattice is still preserved. 

In the 1Q4) approximation we proceed in the same way as before in going from l0,) 
to I Q l ) ,  i.e. we neglect the orbital dependence of the b parameters and set b,&) = bnK(t). 
Finally if we neglect here also the site dependence of the b parameters we amve again at 
the semiclassical 1Q2) equations. 

6. Initial state and inclusion of temperature effects 

For numerical applications of the equations of motion for the 1%) model the initial state can 
be obtained by computing from the usually used end-kink geometry (U, = (-1)""uo. pn = 
0) the corresponding bnti(t = 0). These quantities can be computed by forming the 
expectation values of the displacement and momentum operators with our state (V contains 
the normal-mode coefficients of the decoupled lattice) 

k m j  

The cnj(f = 0) can be obtained from a static sSH calculation with this geometry. To avoid 
numerical difficulties due to the matrix inversions in the equations of motion we can use 
the same approximation as in case of the Davydov soliton [29,30]. Namely, we can assign 
each c,(t = 0) which is smaller than a given threshold value x with x ,  chosen as a small, 
physically insignificant number (e.g. x = 0.005). 

However, multiplication of the above equation for U, by (M/Ur)'/zVnkr and summation 
over n, yields a factor 

due to the orthononnality of the normal modes. After performing the summation over k we 
arrive at 
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Thus from the lattice displacements and momenta we cannot determine the coherent-state 
amplitudes bnkj uniquely but only a weighted average of them over the orbitals. Thus we 
can use 

In a similar way we obtain 

For the determination of the {b,k) in the I@,) approximation for the simulation start we 
have again a weighted average: 

with 

Thus from 

we calculate the initial values of the bnk 

The simulation start in the IQ)  approximation is trivial, since there occur no weighted 
averages in the transformation to normal modes. 

To include temperature in the theory we have several options. One of them is Davydov's 
method which uses a thermally averaged Lagrangian for the derivation of equations of 
motion. However, this method has been frequently criticized as being inconsistent with 
density-matrix theory for mixed states. Further one could use a product of coherent-states 
at each site where one factor resembles a thermally averaged phonon population [31]. The 
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Langevin-equation method (see appendix F) should be used only in the classical case. 
However, because it is frequently applied to model temperature we decided to use it in 
our numerical simulation to study its behaviour. For later applications we want. to use 
the method of thermal population of the lattice phonons prior to the soliton start which we 
applied successfully in the case of Davydov solitons [32,33]. This method has the advantage 
that the calculated initial displacements of the units can be incorporated in the classical SSH 
theory (see appendix F), Davydov's semiclassical I %) method, and the quantum-mechanical 
cases which are discussed here. With the help of the eigenvectors V and the eigenfrequencies 
mk we can populate each normal mode k with an energy Ek according to the Bose-Einstein 
distribution. Then E k  is given by [33] 

One half of this energy yields the displacements and the other half the momenta of the units 
due to a given normal mode k (kB is Boltzmann's constant). Superposition of all modes 
(excluding the translational one) leads to that part of the initial displacements and momenta 
which are due to temperature effects only: 

From these displacements and momenta we can compute the quantities 

which appear in the final equations for the initial displacements and momenta due to 
temperature effects. These are obtained by substitution of (66) into the analytical solutions 
for the decoupled lattice. Superimposed with equation (62) we obtain finally 

k 

where is a lattice equilibration time which can be chosen arbitrarily without effect on 
the soliton dynamics obtained as was shown numerically for Davydov's soliton in 1321. 
We chose typically to = 100 ps. The quantities from equation (67) can now be used 
directly as initial conditions in the classical theory (appendix F), in the semiclassical IQz) 
theory or, transformed according to (58, 59, 63), as initial data for the more sophisticated 
approximations. However, one has to consider whether due to the strong electron-phonon 
interactions it would not be more realistic to fit a parabolic potential to the total (electronic- 
plus-lattice) energy in the potential minimum realized at the start of the simulation and 
compute the eigenvectors and eigenfrequencies necessary from this potential instead of the 
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Figure 3. 

pure lattice potential. Thus it might be necessaq to determine the initial lattice coordinates 
due to thermal fluctuation not from the decoupled lattice potential V, alone but from the 
total potential energy V = Ex + V,. Let us consider a geometry U, = (- 1)""~ which leads 
with U = i u o  to the two equilibria of an odd-numbered chain, then we have as potential 
V ( u )  the usual doublewell potential as sketched in figure 3. 

Note that in the case of an even-numbered finite open chain, we have only one minimum 
at U = UO. Let us define now coordinates x. relative to one of the minima. We choose here 
the minimum U = uo, since U = -uo is not a minimum of the potential for even-numbered 
chains. Thus we have 

x, =U. - (--I)"+'U0 (68) 

and the above-described geometry is given by 

x, =(-1)""(u - uo) (69) 

and we approximate the right potential well by a parabola centred at the minimum (dashed 
line in figure 3) 

W 2 V(U) - V(U0) - - C ( - 2 U  + 2uoy = 2(N - l )W(u  - K O )  =+ w = 
- 2  " 2(N - l)(u - UO)* 

(70) 

i.e. we need to compute the total potential of a given chain, via diagonalization of the Hiickel 
matrix and addition of the lattice energy, only at two points, namely at some arb i t rq  value 
U and at uo to compute the potential constant W .  However, it might be better to calculate 
W for several U values and take the mean value of them. Then in the usual way we 
can determine the normal modes of the potential V(x), populate them according to the 
given temperature T by means of Bose-Einstein statistics, and finally calculate the lattice 
displacements from equilibrium and the momenta due to thermal excitation as described 
above for the lattice potential V, alone. 

At this point a word of caution is appropriate: the above-sketched approach is only 
applicable if the thermal excitation energy NkBT is less than the barrier height AE. 
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Otherwise the harmonic approximation for the potential well breaks down, if states in 
the energy region around or above AE are significantly populated. In such cases one needs 
to use coupled anharmonic oscillators with cubic and quartic anharmonicity for the potential 
function. 

Finally, during a I@o) simulation the actual displacements and momenta can be 
calculated by (note that V is real) 

In the following we present for comparison dynamics calculated with the classical SSH 
model (appendix F), and the semiclassical 1@2) unsutz using Langevin equations for the 
inclusion of temperature effects. 

7. Results and discussion 

We have computed the dynamics of a chain of I I units within the fully adiabatic model 
(as described in appendix F) and the 192) ansutz (as described above; for details of the 
numerical procedure, see appendix G) for different values of the bond-alternation parameter 
UO, since in the SSH model this parameter controls the soliton width. For uo = 0.03 8, 
the soliton half width is about seven lattice sites and decreases with increasing uo, e.g. for 
uo = 0.1 8, it is about three lattice sites [ 11. The case of small soliton widths is interesting for 
two reasons. First of all our calculations including electron-electron interactions indicated 
that these interactions mainly reduce the soliton half width to roughly two to three sites 
[15,20,25,34]. Further the results of Rukh er a1 [22] show that the stability of solitons 
decreases for decreasing width due to quantum effects. However, in [ZZ], as in the 1 0 2 )  

case, a product of an electronic state and coherent phonon states was applied, but treating 
only the electron in the soliton state explicitly, while in the 1 @ ~ )  approach the influence 
of all electrons on the lattice is considered. As already mentioned, in the &) unsak the 
dynamics of the electrons are taken into account explicitly, while in the classical adiabatic 
case the electrons are assumed to follow the lattice dynamics instantaneously. 

As parameters we used the usually quoted SSH values [l] of Bo = -2.5 eV and 
01 = 4.1 eV A. I n  a chain of 11 units this leads to K = 15.93 eV A-', A = -5.36 eV A for 
uo = 0.03 A, K = 8.83 eV A-', A = -4.56 eV 8, for uo = 0.2 8, and K = 5.51 eV A-2, 
A = -3.75 eV A for ug = 0.4 A. The time-step size was chosen as 0.05 fs. As starting 
geometry a so-called end-kink state (U; = (-l)'+'uo) was used. In this case the chain 
ends with a long bond and the unpaired electron is localized at this chain end. Since the 
equilibrium position of a soliton is in the centre of a chain, the kink starts to move away 
from this position. In figure 4 we show the kinetic energy of the lattice together with 
the total-energy error for the above-mentioned values of uo at temperature T = 0 K. It is 
obvious that the fluctuations of the kinetic energy due to the solitonpovement are, though 
not completely identical, very similar for the two models. Further there is no tendency, as 
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one would expect from the results in [22], towards an increase of the differences between the 
two models with increasing bond alternation, i.e. decreasing soliton width. Obviously the 
error in total energy increases somewhat in the case of the IQ2) model, indicating that one 
should use an even smaller time-step size in this case or a better method for the numerical 
integration of the equations of motion, like a Runge-Kutta or a predictor-corrector method. 
However, in cases (b) and (c), where the soliton moves more slowly, the error in total 
energy is small enough. 

In figure 5 we show the time evolution of the electronic energy levels for the three cases 
as computed with the adiabatic model. As can be seen from the figure a comparatively small 
fluctuation of the fundamental gap is connected with the soliton movement. The soliton 
level itself remains at midgap (0 eV) as expected from particlehole symmetry. The lower 
edge of the valence band and, in the same way due to particle-hole symmetry, the upper 
edge of the conduction band, show an oscillation with a smaller amplitude and frequency 
than the upper edge of the valence band and the lower edge of the conduction band. Figure 6 
shows the time evolution of the normalized staggered coordinate g, = @Juo. At least for 
the larger values of UO, corresponding to smaller soliton widths and also smaller velocities, 
the movement of the soliton can be clearly followed in the time evolution of the staggered 
coordinates. Any differences in the two models, if present at all, are too small to be 
observed from the plots. Clearly during the soliton movement, lattice phonons are also 
excited. Finally in figure I the time evolutions of the spin densities at odd-numbered sites 
are shown. 

In these plots the spin densities at even-numbered sites are not shown, because due 
to the symmetries of the model they vanish exactly. If electron-electron interactions were 
included into the model, at even-numbered sites negative spin densities would show up. 
Also here virtually no differences between the two models are visible. The movement of 
the soliton, having its centre at the site of maximal spin densities; is clearly visible for 
the two larger ug values. In  these cases the solitons have a small width and thus their 
velocities are rather small. For uo = 0.4 A already tendencies to lattice pinning show up. 
For uo = ~0.03 A the soliton is rather broad and fast so that its movement is a little bit 
difficult to identify in the plot. 

Thus in contrast to the results reported in 1221 there is no increased instability of the 
solitons with increasing bond-alternation parameter and consequently decreasing width in 
the case of the~lcP2) model, although in 1221 also products of electronic states with coherent 
phonon states are used. The difference obviously is due to the fact that in [22] only 
the dynamics of the electron occupying the soliton level is taken explicitly into account. 
Obviously the influence of the other electrons on the lattice due to electron-phonon coupling 
helps to stabilize the solitons in our IQ,) model. 

In figures 8-1 1 we show the same plots resulting from model calculations including 
temperature, but only for two values of the bond-alternation parameter, namely uo = 0.03 A 
and 0.40 A. For these model calculations we used random forces and a dissipation term 
to simulate temperature effects. Here we observe differences in the two models which are 
most pronounced in the smaller-uo case. In the adiabatic model the soliton remains stable, 
however, with an increasing tendency to lattice pinning in the centre of the chain with 
increasing time. In the (a>) model this pinning occurs at smaller times and then &e soliton 
width increases, i.e. the soliton is unstable. In case of the larger bond alternation the soliton 
remains stable but pinned close to the chain end in both models.~ However, the plots of 
the energies show that these findings have to be viewed with some care., The rather large 
changes in the total energy suggest that the systems are still not in thermal equilibrium after 
the 0.5 ps total simulation time. This is indicated by the time constants r of the heat baths 
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L I 

Figure 4 'lime evolution of the told !&&e energy (solid line) and the e" in Ioral energy 
(dashed line) for simulations in a chain with I I un!ts, computed wi!h the adiabatic (left) and the 
1%) model (right) at T = 0 K for (a) U,, = 0.03 A, CO) U" = 0.2 A. (c) uo = 0.4 6.. 
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Figure 4. (Continued) 

in both cases, whose inverse is 2.04 ps (ug = 0.03 A) and 0.4 ps (PO = 0.4 A). In figure 12 
we show the time average, given for a time-step tl by 

where 1 and k count the time-steps calculated explicitly. As is well known, this has to 
approach unity in thermal equilibrium for a decoupled lattice. Since the kinetic energy 
due to soliton movement remains approximately constant, A(t )  has to approach a constant 
which is equal to 1 + E S / ( 0 . 5 N k ~ T ) ,  where E, is the time average of the kinetic energy 
of the soliton, if it is stable. As we see from the plots such a constant value is reached 
approximately only for the I@>) model in case of the smaller bond-alternation parameter. 
In conbst to the numerical resuIts one would expect that for the larger bond-alternation 
parameter the thermal equilibrium should be reached faster. However, here we have a 
small, compact soliton which is quite resistant against thermal fluctuations and one would 
expect that the presence of this soliton slows down the thermal equilibration of the system. 
Thus it seems that our model for thermal effects, which is based on a thermal equilibration 
of the decoupled lattice prior to the soliton start, should overcome this problem of large 
equilibration times. Further it seems to be more realistic to have the system in thermal 
equilibrium already prior to the start of the soliton movement. 

8. Conclusion 

We have for the first time derived equations of motion for the SSH Hamiltonian of trans- 
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Figure 5. Time evolution of the lowest occupied 
electronic energy level (bottom line), the highest doubly 
occupied level (second line f n m  the bottom), the soliton 
level (straight line at the zero of energy), the lowest 
unoccupied level (second line from the top), and the 
highest unoccupied level (top line) in a chain with 
I 1  units calculated with the adiabatic model (note the 
particle-hole symmelry) at T = 0 K for (a) uo = 
0.03 A, (b) uo = 0.2 A, (c) ug = 0.4 A. 

polyacetylene, i.e. for electrons coupled to lattice phonons, using ansa= states similar 
to those introduced by Davydov for the case of high-energy vibrations coupled to lattice 
phonons. We used a IQpo) ansafz in the spirit of Davydov's ID,) state, where the quantum 
nature of the lattice is accounted for. The application of the quantum-mechanical IQo) 
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Fiwre 6. The normalized staggered coordinate 
g. = enn/uo as a function of site (n) md time (t 
in ps) in a chain of I I units calculated with the 
adiabatic (upper part) and lhe 1%) (lower- part) 
model af *T = 0 K for-(a) ug = 0.03 A, (b) 
uo = 0.2 A, (c) U,) = 0.4 A. 

umutz state which takes into account quantum fluctuations in the lattice is~in progress, and 
the results of these calculations will be the subject of a forthcoming paper. 

Our calculations using the [@I) model show that the dynamics are essentially the same 
in this model and in the classical one, no matter how small the soliton is. Note that the 
larger the lattice dimerization' parameter chosen, the smaller the soliton; Thus treating all 
electrons on-equal footing leads to results different from those of R u b  etul [22] who treated 
only one electron explicitly and found that the soliton becomes unstable, when its width is 
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Figure 7. The spin density Pn(1) a1 odd-numbered 
siles as a function of site (n) and lime ( I  in ps) in a 
chain of 1 I uniD calculated with the adiabatic (upper 
pan) and lhe 1%) (lower pan) model at T = 0 K 
for (a) uo = 0.03 A. (b) uo = 0.2 A, (c) U,! = 0.4 A. 

smaller or equal to roughly one lattice site. Thus the effective electron-electron interactions 
are still implicitly present in this approximation via the lattice equations, since the lattice 
interacts with all elecnons simultaneously. The results obtained with the Langevin model 
for temperature effects suggest that this model is not appropriate for PA in the SSH model, 
most probably due to the large electron-lattice interactions. 

The obvious next step after completion of these calculations is the explicit inclusion of 
eleckon-electron interactions in the model. For this purpose we need a representation of 
the two electron integrals in terms of phonon creation and annihilation operators. These are 
given by (SI units) 
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Figure 8. Time evolution of the total kinetic energy (solid line) and the error in total energy 
(dashed line) for simulations in a chain with 11 units, computed with the adiabatic (left) and 
the 102) model (tight) at T = 300 K (random-forces-dissipation mod$) for (a) U" = 0.03 8. 
(NksT = 0.1293 eV, r = vmin = 0.4909 ps-l. U = 0.6888 (eV A)*), (b) U() = 0.40 A 
(NkBT =0.1293 eV, r = q,,," =2.8873 ps-', U = 4.0514 (eV A)'). 



9116 W Fornet 

F p r e  9. l i m e  evolution OF the lowest occupied electronic energy level (bottom line). the 
highest doubly occupied level (second line from the bottom), the soliton level (straight line at 
the zero of energy). the lowest unoccupied level (second line from the top), and the highest 
unoccupied level (top line) in a chain with 11 units calculated with the adiabatic model (note the 
particle-hale symmetsy) at T = 300 K (random-forcesdissipation model) for (a) U,, = 0.03 8. 
(NkBT = 0.1293 eV, r = hin = 0.4909 ps-', a = 0.6888 (eV A)'), @) U,, = 0.40 8. 
( N k B T  = 0.1293 eV, r = vm," = 2.8873 ps-', a = 4.0514 (eV A)*). 

where e is the elementary charge,  the dielectric constant of the vacuum, sometimes also 
called the electric field constant (EO = 8.854 11 x IO-" A s V-' m-l), and the y. are the 
so-called on-site Coulomb repulsion parameters of the atom at site n, usually calculated as 
the difference between the ionization potential and the electron affinity of that atom. R,, 
is the distance between sites n and m and is given by 

,. . , ,,, , ,,, , , ,  

R,, = J[(n - m)ao + u, - um12 + K-IY - (-1)m12y; (74) 

where no is the lattice constant of the equidistant chain and yo the distance of the sites from 
the chain axis which is defined by the centre points of the cc bonds. 

Since the displacements are very small compared to the distance between the atoms in 
the equidistant chain, we can expand the integrals in a Taylor series in the displacements 
and truncate the series after the linear term to be consistent with the truncation of the similar 
expansion for the resonance integrals. Thus we obtain 
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Figure 10. The n0maliz.A staggered coordinate gn = $n/rql as a function of site (n) and 
time (t  in ps) in a chain of 1 1  units calculated with the adiabatic (upper part) and the 1%) 
(lower part) model at T = 300 K (random forces-dissipation model! for (a) I(,) = 0.03 A 
( N ~ ~ T  = 0.1293 ev. r = U,,,," = 0.4909 ps-1, c = 0.6888FV A)*), @) U,, = 0.40 A 
(NkBT = 0.1293 eV, I' = hio = 2.8873 ps-'. U = 4.0514 (eV AP). 

The derivatives are 

(n - m)ao = (76) -- I ( Y 9 3  a- -  
b2 aum u,,=uDI=o 

and thus 

Ynm = Yi; d u n  - (7-0 

In table 1 we compare this linear approximation for a next-neighbour integral with the exact 
values computed from the Ohno formula for different displacements. It is obvious from 
the table that in the region of displacements which usually occur in simulations the linear 
approximation agrees satisfactorily with the exact Ohno formula. 

The two-electron operator which has to be added to the Hamiltonian is 
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Figure 11. The spin density P.(t) at odd-numbered sites as a function of site (n) and 
time (t in ps) in a chain of I 1  units calculated with the adiabatic (upper pmt) and the IQ*) 
(lower par0 model at T = 300 K (random forces-dissipation model) for (a) U,) = 0.03 A 
( N ~ T  = 0.1293 eV. r = ",in = 0.4909 ps-', B = 0.6888 (ev A)Z), (b) U" = 0.40 A 
( N ~ ~ T  = 0.1293 ev, r = U,:" = 2.8873 ps-I,  D = 4.0514 (ev A)2). 

The equations of motion, derived from an SSH Hamiltonian including in addition this 
term together with the 1%) ansaiz could be used to define effective electron-electron 
interaction parameters which incorporate indirect interactions between the electrons. These 
effective parameters, depending on the interplay between electron-electron and electron- 
phonon interactions, could give rise to an effective attraction between the electrons. This 
would be an analogue to the 'negative-U' models, discussed in connection with high-T, 
superconductors; however, the effective parameters would be well defined and the role 
the phonons play would be more obvious. However, it is clear that in &PA the direct 
Coulomb interactions would play the major role, because it is known that in  PA bipolarons 
are unstable against charged solitons which interact repulsively. But in other conducting 
polymers, bipolarons are well known as charge carriers. Thus in such systems the effective 
attraction between electrons due to electron-phonon interaction is stronger than the bare 
Coulomb repulsion. 

The displacement operators can be transformed to 

as discussed in appendix A. Transformation to phonon operatoors gives then finally 
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Figure 12. l ime average of the total kinetic energy of the lattice divided by OSNknT(A(1)) 
as a function of time at T = 300 K (random-forces-dissipadan Eodel) calculated with the 
adiabatic (left) and the 1%) model (right) for (a) uo = 0.03 A.(NkgT = 0.1293 eV, 
r = "min =-0.4909 ps-', U = 0.6888 (eV A)*), (b) U,) = 0.40 A (NknT = 0.1293 eV, 
r = bin = 2.8873 ps-'. U = 4.0514 (ev A)2). 
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Table 1. Exact (yn) and linearly approximated Cy;;) values of the two-electron integnl (Ohno 
approximation) between two neighbouring sites (MI = 11.25 eV, h = 14.39 eV A, ql = 1.2 A, 
nb = 0.35 A, UI) = 0.03 A) 5 a function of Y for the cases (A) UI = U, u2 = -U(, and (B) 
U ,  = -u2 = U (U is given in A and the y values are in eV). 

U YIZ (A) y t  (A) ~ 1 2  (B) yf; (B) 
-0.06 10.04 10.03 9.52 9.48 
-0.05 
-0.04 
-0.03 
-0.02 
-0.01 

0.00 
0.01 
0.02 
0.03 
0.04 
0.05 
0.06 

10.10 
10.16 
10.22 
10.28 
10.35 
10.41 
10.47 
10.54 
10.60 
10.67 
10.74 
10.80 

10.10 
10.16 
10.22 
10.28 
10.34 
10.41 
10.47 
10.53 
10.59 
10.65 
10.72 
10.78 

9.63 
9.75 
9.86 
9.98 

10.10 
10.22 
10.35 
LOA7 
10.60 
10.74 
10.87 
1 I .01 

9.60 
9.72 
9.85 
9.97 

10.10 
10.22 
10.34 
10.47 
10.59 
10.72 
10.84 
10.96 

The expectation value of the two-electron operator calculated with the ]@po) ansatz state has 
to be added to that of the one-particle operator. Note that in this case we have to build a 
Slater determinant from the one-particle states and we have to introduce different orbitals 
for different spins for states which are not singlets. Further, in PPP theory the Coulomb 
repulsion between the ionic cores appears explicitly in the total energy in the form 

where zn is the charge of the ionic core n, i.e. in the  PA case we have CH+ ions and 
consequently en = 1. This term could be absorbed into V,, leading to another minimum 
geometry on which then the phonon operators would have to be based. Alternatively one 
can expand the integrals in equation (82) and add the new operator to the Hamiltonian: 

In this way electron-electron interactions can be included in the model. In this term 
already the modification of the electron-electron interactions due to phonons is obvious. 
The electrons do not interact as ban  particles any more, but the interaction parameters 
are modified by phonon terms. The actual strength of this modification, however, can be 
only calculated after introduction of the ansarz state. Note, that according to the previous 
discussions already from the one-electron terms effective electron-electron interactions of 
an indirect nature show up due to the coupling to the lattice phonons. 
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Finally we want to point out the differences of our model from the electrosoliton concept 
of Davydov [35], introduced for the electron transport in proteins, and later extended 
to a bisoliton concept in the high-T, materials. The SSH Hamiltonian for t-PA contains 
the electron-phonon interaction in the terms off-diagonal in the electron creation and 
annihilation operators, while in Davydov's theory for proteins it appears in terms diagonal 
in these operators, which is an ansatz which cannot be used for  PA, since here the 
resonance integrals depend strongly on geometry, while the dependence of the diagonal 
Huckel parameters on it is, if present at all, very weak. Further in Davydov's model only 
one electron is treated explicitly and the ansafz is a 1 4 )  state only. However, the case 
of the Davydov Hamiltonian and the electrosoliton concept is dealt with in paper Il of this 
series. 
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Appendix A. Lattice phonons 

To define the lattice phonons we have to start from the potential of the decoupled lattice as 
a function of the displacement coordinates U,, wtjch are measured relative to an equidistant 
chain of length ( N  - 1)ao with a0 = 1.212 A, leading with a dimerization parameter 
ug = 0.03 A to the geometry of undoped polyacetylene: 

For definition of the phonons we have to find the minimum geometry U: of this potential. 
Thus we have to differentiate the potential with respect to U,: 

av av 
aul au, 
- = K ( u i - u z ) - A  -- - K(-u.-I + 2~~ - u,+I) 

Now we have to solve the system of equations 

From these equations we obtain 

A 
U: = U: - (n - 1)- K 
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corresponding to the equidistant chain of length (N - 1)@0- A / K ) .  The parameter U; can 
be chosen arbitrarily and just corresponds to a translation of the whole chain which does ,not 
change its potential energy. Now we define new displacements relative to the equilibrium 
geometry q. = U, - U; given by 

(A51 

Thus we have U, - u,+i = qn - qn+l + ( A / K )  and we can define a renormalized hopping 
integral fi  via 

t...+1 = B - (U, - U.+l)Q! = B 

A A 
K K qn = U. + (n - 1)- - U; U, = qn - (n - 1)- +U;. 

Q! - (qfl - q,+dQ! = B - (qll - q"+l)Q! (A6) 0 o *  - - 
K 

with B = Bo - ( A / K ) a .  Substitution of U,, - u.+~ into the potential yields 

(A7) 

with C = - ( N  - 1)A2 / (2K) .  The phonon operators are now defined in the usual way with 
respect to the displacements q. = 0. Since for the momenta p .  = M(du,/dt) = M(dq./dt) 
holds, we obtain 

in = x d m v n , ( @ - k & )  $ n = i ~ ~ V n k ( & - h k ) .  (AS) 
k k 

The translation U; can be determined such that the starting geometry [qio)] has its centre of 
mass at zero. From the starting geometry {U,?] we obtain finally our transformation 

Appendix B. Derivation of the Lagrangian for a three-site system 

The general structure of the different terms in the Lagrangian can be most easily visualized 
by deriving them for a simple three-site, three-electron system. In this case our unsutz state, 
formulated for spin orbitals, i.e. each orbital is occupied by one electron and contains a spin 
function, which we do not write out explicitly, is given by 

IQ) = cnic~ci3caI c , , ~ c ~ ~ I O ) ~ I B ~ ~ ~ )  

lhmr) = exp - 

^+ ^+ ^+ 

nml 
031) 

lbntl + bmk2 + h k s l 2  exp x @ n k l  + bmm + b id&]  lo), 
[ k  1 [ k  

where t$ creates an electron at site n in spin orbital j .  The Lagrangian is given by 



Multiquanta states derived from Davydov's 101) ansatz 9123 

The time derivative of I@) can be straightforwardly computed to 

The expectation value formed with (01 and using 

(finml$;k+l/%mr) = b i k i  + bLz -!- b;3 

is given then by 

- ( e h 1  f d:kZ  f &&'nki f b m s z  f b d 1 .  P5) 

Now we can write the first term as a single summation over spin orbitals j and the second 
term can be split into six summations according to the time derivatives occumng. Further 
in these terms we interchange summation indices, and finally, with the definition 

we obtain 
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We obtain such a term from each spin orbital and thus we have 

with 

Therefore with 

we obtain 

r _. 

Finally we perform the spin summations and obtain 

where j, j' run now over the spatial orbitals only and the o j  are their occupation numbers. 
X and X read now as 

Note that X j j  is not equal to X j  in the case of spatial orbitals which might be doubly 
occupied. Note further that terms X j j  and later on theirderivatives cancel out by the factors 
(o j ,  - 8jj . )  in the summations. 
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Now we have to evaluate the expectation value ofthe Hamiltonian with IQ). For this 
purpose we start with the phonon part: 

We use the fact that a coherent state I,¶&) is an eigenstate of the annihilation operator with 
the coherent state amplitude as eigenvalue 

Thus we obtain 

= x f i @ k  ICnl 1 2 j C ” 2 ~ 2 1 C r 3 1 2 ( b ~ ~ ,  b :k l  + b;j)(bnH + b m k z  + b I k 3 ) .  @16) 
K nml 

The first term in the first bracket ( T I )  gives 

TI = C f i @ ~ C l c , ~ l z b , r l ~ ~ r ~ X 1  + C C l c m j ’ I * b m ~ ~ X ~ j ’  ] . (BIT) 

From the remaining two terms in the first bracket in (B16) we obtain similar contributions 
where e.g. Tz reads after exchange of summation indices 

k n m j ’ j l  

Performing the spin summations leads finally to 
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where 

For the products we introduce the abbreviations 
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Now we want to discuss one of the electron-phonon interaction terms: 

(@I x(t:16n+l,l + t:+l,]&l)Jkl@) = ~ c ~ l ~ n + l , l ~ n , n + l , l  
n n 

From this the general form of this kind of term can be deduced: 

Note that here the orbital indices run from one to v ,  the number of singly occupied spin 
orbitals. Further 
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where now the orbital indices run from one to /L, the number of (singly and doubly occupied) 
spatial orbitals. Further the products P are given now by 

Terms with possibly occurring negative exponents in the products P and their derivatives 
cancel out via factors (oj’ - 8jj’)  in the summations. With this all terms in the Lagrangian 
are calculated, and we can proceed with the derivation of the equations of motion for the c 
and the b values. 

Appendix C Equations of motion, conservation of overlap and Lagrange multipliers 

Here we have to show first of all that our Lagrangian conserves the norm of the orbitals. 
This must necessarily hold, because the Hamiltonian conserves the number of particles. 
Conservation of the norm implies that we have to show that X ( t )  = N j ( t )  = X j ( t )  = 
Xjy( t )  = 1 independent of time, provided that the orbitals are normalized in the initial 
state, i.e. Nj(t  = 0) = 1. This is equivalent to showing that (dNj /d t )  = 0. For this purpose 
we start with the Lagrangian in orbital form. The Lagrangian is divided into several terms 
which then can be differentiated step by step: 

6 

I F 1  

L = ~ T ,  

(cnjc:j - cijCnj)xj 
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Further we have the terms arising from the Hamiltonian: 

Finally we have the term T6 = T;. Now we have to build the equations of motion for the 
c values from the Euler-Lagrange equations of the second kind 

This leads to 

where 

= C ( O j .  - 8,)(bmjrC;y+ t;j,cmjr)xjjL (C5b) 

As the next step we have to differentiate the individual terms in L with respect to c t .  For 
TI this yields 

m j' 
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Together with 

_-  ax,, 
ac;j 

= C ( O Y  -8 j r j# )8 j r , jC” jx j ’ j .  = (Oj  - Sjj’)C,Xjj, 

j .  

we can define A j :  

Thus vector A is imaginary (A;~= - A j ) .  The derivative of T2 we split into two terms, the 
first one arising from differentiation of the factors at the X j  and X j J ,  the second one from 
differentiation of the X values, leading to 

aT* ih 
_ = _  ( B n j  + Cj,OjC”j ac;j 2 (C9) 

with 

+ - 81j,)(b.xjb;kj’ - b:kjbmjbmkl‘~f b:kjbjdmwjr - b&&)Xjj’} (C10) 
mj’ 

and thus 

(C11) 

and therefore matrix B is purely imaginary. By differentiation of the factors X j  and X j j j  
which yields 

1 f ~ ( o j ’ - 8 j j ’ ) l C m j ,  I 2 ( b “kJ .b* mkj’-b~kjbmkj’+b~kjbm~j,-b”kjb;Kj,)Xjj’ = -Blj 
mj’ 
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and 

(C12b) 
axj’ju 

ac;j 
+ c(oy - Sj.ju)Icm,j.12(bmkj,b~.kj,, - G&b,n,ky)-~ 

“7’ 

and since one can easily show that 

Oj’ 
- (o. ( ,  I - 8. J”j’ )(oj - Sj j ’ , -  Sjjr)Ajj , ju = c ( o j u  - S,y)(oj’ - 8j’j - Sj’j.)Ajj’Jn~ (C12c) 

j , ju  oj Yju 

holds, where is any arbitrary agument of such a summation, we obtain 

= - c; (CW 

and thus vector C is also imaginary. The term f i  leads again to two terms Dnj, resulting 
from differentiation of the factors  at^ X j  and Xj j ’ ,  and E, from differentiation of the X 
values themselves, where 

Again, both terms are real. The differentiation of T4 can again be split into two different 
terms, one resulting from the factors at the products P ,  the other one, F& from differentation 
of the products P. From 

a T4 
oj(y,.~,+~,jDn.n+l.jP”j + Y,X_i,jC.-~,jD,.”-~,jp,-,.j~ _ = _  

a c;j 
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with 

while the second summation and differentiation of the products P yield with 
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With Fnj = FIj + F". 
01 ' 

G n j  = - ~ n j D n , n + ~ , j P ~ j  + G L j  

and 

(C20) 

aL 
- C n j X j  + H n j c n j  + G,jcn+l,j + G : - l , , ~ n - ~ , j  

2 
y ( A j  + B.j + C j )  + D n j  + E j  + F-j = H'. H n j  

we can write the equations of motion (divided by o j )  in the form 

ih . 
2C, , jX j  = -,Xjcnj + Knmjcmj  

m 

K n m j  -HnjSnm - GnjZm,n+l( l  - & N )  - G ~ - l , j S m . n - l ( l  -&I).  

Thus the matrix K j  has real diagonal elements. and only the first off-diagonal ones are 
non-vanishing. For these elements the following holds: 

K n , n + ~ , j  = - G n j  

K n + ~ , n j  = C S m . n + ~ K m , m - l , j  m = - ~ ~ & z , n + l G ; - i , j  m = -G*. (C22) 

= K:,n+l,j + K j  = KT.  

Therefore, since Hnj is real, the matrices K j  are Hermitian, i.e. K,,j = K ; n j ( K j  = KT).  
From this we obtain for the norms of the orbitals 

Thus the pro 

x j  - Nj  - - -_ 
X j  N j  

1 of the noms of the orbitals is conserved. From this we obtain : equality 
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Let us assume that we have found a solution of the equation (which follows also from the 
substitution cnj = (Nj) l /zanj)  

From (C25) follows 

RNj = Nj C ( K n m j ~ , , , j ~ ; j  - K ; m j ~ G j ~ n j )  = 0. (C26) 

Therefore a solution of (C26) is also a solution of (C24), since it conserves the norms of 
the orbitals and thus N j ( t )  = Nj(r  = 0) = 1 and ( d N j / d t )  = 0. 

nm 

Thus we are concemed simply with the equation 

ih&j = Knmjcnj. 
m 

Now we could padtion Hnj into two terms Hnj = Zj + Ynj with 

(C28) 

Because Zj is real and is simply multiplied by cnj on the right-hand side of the equations of 
motion, we could remove it from the equations by a phase transformation, i.e. the orbitals 
resulting from solution of the equations without Zj would have to be multiplied by the 
phase factor exp[irpj(t)] where the phase is given by 

R ili 
Z .  - -(Ai + Cj) + Ej Ynj = yBnj + Dnj + Fnj. '- 2 

and could be calculated during the simulation by numerical integration. However, since our 
equations as they are do not conserve the orbital overlap (see below) and Zj contains time 
derivatives of our unknown functions this transformation is not appropriate at this step. 

Now we are in the position to compute the time derivative of the overlap matrix: 

~ i ; j  = fi:( ~ c : ~ c ~ j )  = x[( i f i i , , j )c ; j  - ( - i ~ z t ; ~ ) c ~ j ]  
" (C30) 

Rkij = E(Knmjcmjc:i - K;,,,icEicnj) = X ( K , , ,  - K., j )c~jcy.  
nm "m 

Since all terms in K j  depend on j ,  our equaitons of motion conserve only the norm of the 
orbitals, but not their overlap. Therefore, our Lagrangian L leads to equations of motion 
for the c values which conserve the norms of the orbitals, but not their overlap. Since we 
deal with fermions we must force OUT system to overlap conservation by introduction of 
Lagrange multipliers cjj. Let us denote the orbital overlap by S. We have to deal with a 
modified Lagrangian (in orbital form) 

L' = L + ih C E j l ( S j l  - S j l )  
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and the equations of motion 

Now let us denote all terms on the right-hand side of the equations of motion, resulting 
from differentiation of L alone, by Anj. Then we have 

ih - ihtzf = A j ,  + - 
Oj' 

Anj c Knmjcmj. 

E;& 
i 

m 

From this we can compute the time drivative of the orbital overlap S as 

i f i S f j  = x[ ( i f i tn j ) c : f  - (-ihizjr)c,,j1 

where we have defined 

i f ixf j  C(A.~C;~, - A;.c,~) = C(K,,,~ - K ~ ~ , ) c ~ ~ c ; ~ ~ .  (C35) 
n nm 

Since we demand that our orbital overlap should not change in time, we have (where 0 
denotes t = 0) 

and thus 

Since at the beginning of simulation we have orthonormalized orbitals and thus Sjj(0) = &j 

this leads to 
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Use of the hermiticity of - E. which results from the hermiticity of S and its time derivative, 
yields 

Since x is nothing else than the time derivative of the orbitd overlap obtained above from 
the equations of motion without Lagrange multipliers, we get the final expression 

Now we have to derive the equations for the b values. As first term we obtain in orbital 
form 

(C43) 
iA - - 0 , I C  .Iz b n k j  f c ( O J ,  - 8 j j , ) l C m j r l  

3 = o  

~ = -0 j IC"j l  
ab;, 2 

I nI [ '  
mj' 

From the derivative of L with respect to bikj we obtain the following different terms: 

aT2 i7i 



we can evaluate 



It remains to determine T(4), which results from differentiation of the factors P.j and Pnjj'. 
For this purpose T(4)  is split into two terms. First of all we have 

(C55a) 

where ymj' is defined in equation ('217). This leads to 
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Therefore we can write finally 

Ani (k)  = A:, (k )  + Aij (k )  + 1;; (k )  (C63) 

Wnj,mj,(k) = WLj,ml,(k) + W;j,,j’(k) + W:j,mjc(k). 

Now all terms in the equations of motion are defined. They are collected to a closed form 
in appendix D. 

Finally we would like to note that equation (C25) can also be obtained from 

by the normalization transformation 

Substitution of (C65) into ((264) leads to 

where Knmj  contains now some additional normalization factors, which in the end are equal 
to unity, and finally to 

which is identical to (C25). 

Appendix D. Closed form of the equations of motion 

One can split the equations of motion’for the electrons (C21) and (C41), into terms which 
contain time derivatives of the unknown functions and those which do not. For this purpose 
we define 

where we have the matrix 
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Matrix D and vector E are defined in equation (C14). matrix G in equation (C18b) and 
(C19) and F in equation (C17) and (C18d). Thus our equations of motion are 

iii ih O T C . ,  
f i & j  + -(Aj + Bnj + Cj)c.j + - _‘_1LT 2 2 j’ 0, +o,< 

X c ( A j ’  + Bmj’ + Cj, - Aj - Bmj - Cj)cmjcEj’ 
m 

where A is defined in equation (CS), B in equation (Cll), C in equation (C13), and 

W“j& = OnmjSjj! + ? j jdnm.  @ 5 )  

One can easily verify that parts of the second term in equation (D4) can be rewritten as 

iii 
--Cnj(Bnj 4- Cj)  = %cnj x[An j ,m j , ( k )bmk j ’  - A:j,,j<(k)Gkjtl (D6) 
2 k mj’ 

Although, as shown below for the Aj, the parts of the third term in equation (D4) containing 
the Cj vanish, we keep them here, because it is easy to rewrite that term with the above- 
defined A@), which in the course of a calculation has to be computed anyway. Thus with 
the help of this matrix we obtain from the third term in equation @4) 

E e -[(Bm.j” 0,”C.j” + Cy) - (Bm,j + cj)lc,,jcm’j” i 2 m’j. oj + oj” 

iii O j G j ’  
C C m j C $  = s-. I I . = sjf 3 - -(Ai, - Aj) 

m 2 j’ 0, + 0, m 
cmjc& = 0 

we obtain the equations 



Multiquanta states derived from Davydov‘s 101) ansae 

where we have the definitions 

Unj,mj,(k) = cnjAnj,mj,(k) + 1”1 *.c*, .,,[Am,p,,j,(k) - Am*j.mj,(k)l 

0 .“cnj” 
J ~ m ,  jcisp [A;, jo.,,y (k)  - A i r j , ~ y ] .  

0.rc .I 

” j .  oj f oj. cm J 

V . .,(k) = - ~ ~ j A i ~ , ~ ~ ( k )  - R J J V  oj t Oj” d j ”  

Further we obtain from 

c . c ‘ I  - C,VC .* .I ) 
fi R 
zA jcn j  = -p c(oj’ - Sjj,)( 5, I mi  

my 

the equation 

ifi 
i i i tnj  + z ~ j ~ n j  = ih C [ P ~ ~ , ~ ~ C ~ ~  + ~ ~ ~ , ~ ~ i ; ~ , ]  

Pnj,mj, F S,,Sjj~ + +C“j(Oj. - Sjy)c;j, 

mj’ 

with the definitions 

Q .  . -  2c*j(o11 - Sjjr)cmy. JtI,mJ’ -- 

With this we can write the equations of motion in the simple form 
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as can be verified from equations (C43) and (C44). 
On the right-hand side we have from equations (C44) and ((247) first of all 

%j,ml'(k) = Eo,oJlcnj12[6"m8jl' + (Oj, -8jj,)lcmJ,l*l 
+ ~j~jj,(c~jcn+i,jDn,n+l,j~~.n+i,jSm.,+1 

I *  - -  2[~"j~~+~. jDn.n+i . j r=.n+~. j  + c~-l,jc~jD~-i,"jr"-i,"j 
+ ~ ~ j ~ ~ - i , j ~ ~ , ~ - l , j r ~ ~ l , ~ j  + ~~+i,j~=jD~+1,~jr~."+i,jl6"m 
+ C ~ j ~ ~ - ~ , j D ~ , ~ - ~ , j ~ ~ - ~ , ~ j ~ ~ , " - ~ )  + ~ n j , m f ( k )  0 1 8 )  

where matrix I? is defined in equation (C48), while w is defined in equations ((2.54). (C57), 
(C62), and (C63). Finally we have 

Jnj(k) = ADVJ~C:~ (Bnecn+i. j D n , n + l ,  j Pnj + En- 1.~cn-1, j D n , n - ~ ,  j pn-1.j) 

+ C ( o j  - 8jj,)oj./cnj ~ ' f i o k  Bmk[c;j,cm+i, j,~m.m+I,y D,$(D:+l,j,)*Pmj,j 
"7 

+ ~mj,~;+i,j,Dm+~,~l'(D~j,)*D~+i,l'P~j,jl+ (D19) 

where matrix X is defined in equations (C53), (C57), ('261). and (C63). Using again [nj} 
as one index and together with equation (D15) we have the following system of equations 
for the determination of the time derivatives of c and the bk from their actual values at a 
given time: 

W PC + QC* + U(k)& + V ( k ) e  = WC (D20u) 

(D20b) 

[ k k 1 
W[A(k)C+ A(k)C* + O(k)&] = n(k)bk + J(k) .  

Appendix E. The Lagrangian and the time-dependent variational principle 

In the Lagrangian method we have the variational principle 

The part containing the time derivatives leads to 

In the parts where the variation occurs under the time derivative, partial integration leads to 
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Since at the end points of the integration interval we have Sq(t1) = Sq(t2) = 0, we have 
together with an additional partial integration 

?a[ 2 ((vl$)~-(#)) dt =*[ ((bvlg)-(:)6v)) dt 

= ifi [ (@I$) dt - ( v l ~ v ) I ~  + 1' (V I :@)  dt 

= ifi [ ((6.1:) + (v/:av)) dt = $6 [ (PI $) dt. (J% 

Thus we have shown that 

(W 
"(rpl&)dt = 8 r ( q l T a t  ifi a- - al.) dt = Gs(l(qli%E - Gip) dt 

I* f l  

where 

(E6) 

Therefore the solution of our Euler-Lagrange equations 

aL 
-0 (37) 

is equivalent with the application of the time-dependent variational principle. This is meant 
when we speak about 'correct' equations of motion in contrast to those derived with the 
method of Davydov who used the Hamiltonian principle but not the correct canonical 
conjugate variables [29]. The Euler-Lagrange equations finally follow directly from the 
variational principle: 

d aL aL 
d t w )  ai.) 0 

d aL 
dta(pi a(rpi 

(W av* aL ' I  S[ L(v, (p*, (6, rp")dt = + -6v* dt = O  

by partial integration and using Sp(t1) = Sv(tz) = 8q*(tl) = Sq*(tz) = 0: 

'2 d aL 

= 1" [sqzaui +SV -- dt a.* dt. (E9 
d a L  * d  aL1 

Therefore our variational principle 

can be fulfilled for arbitrary variations only if the Euler-Langrange equations 

(Ell) 
d aL aL d a L  aL 

dtayj am dt a@ a.* 
_ _ _ _ =  _ _ _ _ =  

are fulfilled. 
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Appendix F. Adiabatic dynamics with classical lattice 

In this model which is usually applied in simulations of the dynamics of polyacetylene 
the ionic CH+ cores are assumed to move as classical particles in a potential created by 
the n-electrons, which are treated within a Hiickel-type model, and by the o-electrons. 
However, the c-electron potential and the a-z interactions are assumed to be included in 
the lattice potential. Also the dynamics of the rr-electrons are not computed explicitly, but 
the electrons are assumed to follow the ionic cores immediately. Thus we have 

The coordinates U, are usually transformed to the so-called staggered coordinates $" = 
(-l)"+'u., leading to the form 

2 "  
(F2) 

For each geomeiry (pa] the energy E,  is computed by diagonalization of the Hiickel matrix 

K 
V = E n + -  x(h + $n+i) - A ( v ~  + (-lIM@~). 

H c ~  = ~ i ~ j  (F4) 

has to be solved. The z-electron energy can now be obtained by summation of the 
eigenenergies multiplied with the occupation numbers of the orbitals: 

E ,  = oiq. 
i 

It can be shown that the derivatives of E, with respect to the displacements can be obtained 
analytically by [13] 

a En - = 2a(-I)"[Pn,,+,(l - 8"N)  - P",n-lU - 41) l  P6) wn 
where the density matrix is given as usual by 

Prim = coicnicmi .  
i 

Note that the MO coefficients are real numbers in this case. The constants K and A are 
determined by the requirement that a geometry 

*n = U + (-l)"(n - I)u Pg) 

corresponds to a minimum of the total potential for u ~ =  uo and a = 0. In this way a regular 
geometry with dimerization uo and chain length (N - 1)uo is the equilibrium geometry. Thus 
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one performs a Hiickel calculation on this equilibrium geome‘uy, computes the derivatives 
of E,, with respect to the t,br and from this 

From this the constants can be computed by [26] 

K =  [ -- a: + 2 - -  @ ( N I  a“] / {4uo [ (N  - I )  - - 
N - I  aa 

@ ( N )  = f (1  + (-1)N), 

Newton’s~equations of motion are then 

f (t,bn-i +%N -.&dl + A(6-i + ( - l ) N & ~ )  

or in the physical displacement coordinates 

pn = MU, 
(FW 

K[(un - u,+1)(1 -&NI - (Un-1 - u d ( 1  - h ) l +  A(&I -h). F, E e,, = -- - a E, 
au, 

Temperature effects can be included in our calculations as described in the main text via 
the initial conditions; however, one can also add random forces R. and a friction term to 
equation (FIZ), leading to the Langevin equations 

en = F.(t) + - rp.. (F13 

I‘ is the time constant of the heat bath. The correlation function for the random forces is 
(assuming for the moment a continuum limit): 

( R ( x ,  t)R(o, 0))  = zMkeTrQS(x)w) cF14) 

where T is the temperature and a0 the lattice constant. The random forces are assumed to 
follow a normal distribution with standard deviation fi: 

w(R”) = (I/&) exp[-~,2/(20)1 (FW 

where in the normalization factor for U just its value in the actually used units has to be 
inserted. In actual computations we usually [12] calculate a series of L = 12 uniformly 
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distributed random numbers X,,?(t)(O < X,&) < 1) for each site n in each time step t and 
generate the forces as 

Thus the variance of [X.,&) -0.51  is^ f and the standard deviation of R,(t) is f i  with the 
mean value zero as required. The interval for the forces is IRn(l)I 6 647. Thus we obtain 
an approximate Gaussian distribution which would be exact if L would go to infinity. To get 
a feeling for to what extent the Gaussian distribution is realized, we computed random forces 
for a value of U as obtained for a chain of 100 units, r = 0.0413 ps-' and T = 310 K, 
M = 1 I4m, (m, is the proton mass), K = 13 N m-', and L = 12. We computed IO6 
values and divided the total range of zk6f i  into 200 equidistant intervals. Then we counted 
the number of R values occurring in each of the intervals. These numbers were normalized 
such that for the interval around zero the value (2nu)-I/* is obtained. In figure F1 this 
histogram is plotted together with the exact Gaussian diskibution function and we see that 
the agreement is satisfactory. 

re,<* I I.",%) 

F i r e  F1. Plol of the numerically determined distribution of random forces w(R,)  as function 
ofsite n (vertical lines, see text for details) together with the exact Gaussian distribution function. 

The effect of the two additional terms in the equations of motion is to drive the system 
into thermal equilibrium with the time constant r. Requiring the random forces to be 
constant within a time step r and in a lattice period a0 we obtain hy averaging over r and 
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the lattice constant a0 

For the time constant we use the lower non-zero phonon frequency of the lattice: 

Since the time constant is an additional parameter which can be chosen more or less 
arbitrarily, we recommend using the method of thermal lattice population as described 
in the main text. Further, the latter method can be used in all three methods applied, while 
the Langevin model is valid only for classical lattices. However, to study its validity, we 
applied it in this work. 

Appendix G. Numerical procedure for the solution of the equations of motion for the 
1%) aJlsatz 

The equations of motion for the electronic system in the 102)  approximation are 

%Lj = [ ~ - ~ ( q n  -q~+l )~c .+~, j+IB-~(q , - l  - q n ) ~ ~ n - ~ , j  (GI) 

where one has to take care for the boundary conditions in the cases n = 1 and n = N .  For 
the numerical solution of these equations neither a one-step nor a Runge-Kutta method was 
sufficient to obtain a constant overlap matrix and energy with a reasonably large time-step 
size. Thus at a given time to we solved the eigenvalue problem of the right-hand side of 
equaiton (Gl): 

HV = VE ' E,,, = E,&, V+V = VV' = 1 (G2) 

H n m ( t 0 )  = {p-Q![%(b-qn+I ( t O ) I ~ 8 m , n + l ( 1 - & ~ n N ) + { ~ - ( Y [ q n - I  (tO)-~n(tO)~~~m,n-l(1-8nl). 

((33) 

Then the equations of motion are written in matrix form 

&Cl(t) = H(to)cj(t). (G4) 

Multiplication from the left with V+, insertion of the unity matrix in the form VV' and 
transformation to dj(t) = V+cj(t) yields @e decoupled equations of motion 

ihV+Cj(t) = V+H(b)VV'cj(t) j &dj(t) = Edj(t) 

j &dnj(t) = Endnj(i). 
(G5) 

Assuming H to be constant during a reasonably small time step 5 ,  and thus also its 
eigenvectors and eigenvalues, the equations can be integrated 

dnj(to + 5 )  = dnj(to)e-('/')E"r (W 
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which yields the eigenvectors at to + z after back transformation by multiplification with V 
from the left 

Note that V is real. The lattice variables are computed as usual: 

MO + z) = p&) + F,(to)z (G8) 

where one has to take care again for the boundary conditions in cases n = 1 and N. The 
forces are given by 

F.(to) = K[q,+i(to) -%(to) + qn-~(to)l + 2aRetP,,+100) - Pn,o -~ ( t~ ) l .  

z 
qdto + 5) = q&) + pn(to + r)- M 

(G9) 
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